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Abstract. Extended discrete kinetic theory (that which we call nonconservative) including
sources, sinks, the creation and annihilation of test particles and inelastic scattering etc added
to the elastic collisions, was first introduced by Boffi and Spiga. The mass conservation law (or
momentum, energy) becomes, by adding polynomials of the mass (or densities), nonconservative.
There exist linear and quadratic nonconservative models for which travelling waves were recently
found. In order to test the travelling waves as shock waves (Whitham–Lax criteria and shock
inequalities) we consider an intermediate class of models wherein the nonconservative models we
restrict the parameters such that the mass conservation law is retained.We find rarefactive (with
mass and pressure decreasing) shocks.Firstly, for a large class of models, from the conservative
mass relation and the modified momentum (including nonconservative terms) we prove thatonly
rarefactive shocks can satisfy the shock inequalities. Secondly, for particular models: the two-
and three-dimensional Broadwell models, the hexagonal 6vi model and 8vi , 9vi squares models
(without and with rest particle)we construct explicit travelling solutionswhich result from the
compatibility between different scalar Riccati equations. We find a condition such that the Lax
criterion and the shock inequalities are satisfied, while we numerically check the Whitham criterion.
We also find that a criterion for overshoots of the internal energy, established previously for
conservative models, still works for the nonconservative ones.

1. Introduction

Extended discrete kinetic theory (that which we call nonconservative), introduced by Boffi and
Spiga, has been extensively studied [1]. They add to elastic collisions a background medium,
external sources and sinks, effects of absorption and generation due to inelastic scattering etc.
A great difference, with conservative discrete velocity models (DVMs), is that theconservation
laws are modifiedby including nonconservative terms: for instance, by adding polynomials
functions of the densities, either linear [2] or quadratic [3]. Recently, exact travelling wave
solutions and (1 + 1)-dimensional solutions were found [4].

For the densitiesNi(z) travelling waves with the variablez = x−ξ t (wave speedξ , space
x, time t) of nonconservative DVMs with binary collisions and quadratic nonconservative
terms ([4] also deals with linear terms), the exact solutions were obtained from compatible
different scalar Riccati equations number equal to the independent densities. For conservative
or nonconservative (except mass) DVMs this number is smaller because we substract the
number of linear conservation laws (invariants). A difficulty for the conservative DVMs is that
this number can be larger than the number of physical invariants (mass, momentum and energy).
The nonphysical invariants are called ‘spurious invariants’. In contrast, for nonconservative
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Figure 1.

DVMs with only the mass conservation invariant, we have no spurious invariant. The travelling
densitiesNi(z) waves and the solutions of scalar Riccati equations of the type (see section 4):

Ni(z) = n0i + (nsi − n0i )/[1 + eγ z] γ, n0i , nsi constants (1.1)

remain almost constant for|z| large (see figures 2–4), but their two asymptotic states are either
n0i or nsi at z = ±∞ . Similarly, for the macroscopic massρ(z) and the momentumJ (z)
along thex-axis, the asymptotic states atz = ±∞ are eitherρ0, j0 or ρs, js . For shock waves
we must first consider the direction of the shock (from the upstream to the downstream states)
and determine the asymptotic states which are either the upstream (satisfying a supersonic
inequality) or the downstream state (satisfying a subsonic inequality). If the direction of the
shock is positive, then the upstream (downstream) state is atz = −∞ (z = +∞). In contrast,
for a negative direction the upstream (downstream) states are atz = +∞ (z = −∞).

In section 2, see figure 1, we define, in thed = 2 plane with two coordinates(x, y), a
class of models with velocitiesEvi = (x = ei, y = yi) (in addition, only the Broadwelld = 3
dimensional is considered), and briefly recall previous results and the different formalisms
used in the paper. The planar models are such that for anyEvi exists its opposite,Evj , with
Evi + Evj = (0, 0) or for the projectionsei, ej along thex-axis we haveei + ej = 0. In
particular, for eachEvi = (ei, 0) there isEvj = (−ei, 0). Furthermore, for everyEvi there isEvk
such that the sumEvi + Evk = 2(ei, 0) is along thex-axis. As an illustration some models are
presented in figure 1 where, for brevity, we substitute the densitiesNi to the velocities. The
Ni densities depend on(x, y, t) but for travelling waves along thex-axis, they coordinate
disappears and they are only(z = x − ξ t) dependent. We only write the evolution equations
for the (x, t)-dependent solutions and write for the conservative, the nonconservative and
the nonconservative (except mass) models the evolution equations for both the microscopic
Ni(z) and macroscopicρ(z), J (z) quantities. We define the nonconservative terms and the
restrictions when we re-introduce the mass conservation. Later we define the asymptotic states,
the Lax–Whitham criteria [5] and the shock inequalities. For conservative DVMs, results have
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been obtained in the general case [6, 7] and for other particular models with specific collisions
[8]. As quoted by Whitham [5]:

In some wave propagation, different levels of approximation to the govering equations
lead to different types of wave motion. A related effect is that the propagation speeds
defined by the highest derivatives may be quite different from the speeds at which the
main disturbance travels. Then the questions arise to know which sets of waves are
dominant.

For shock waves the main disturbance is the sound wave (or characteristic) which corresponds
to the lowest-order derivative and the problem is to check whether the waves associated to
higher orders are damped whent → ∞. Broadwell was the first to introduce this Whitham
criterion for his shock wave. For conservative DVMs general [6] and particular [8] results
have been obtained for this criterion, exploiting the fact that the asymptotic states correspond
to vanishing elastic collision terms. For nonconservative, except mass models, this is no more
true for the asymptotic states and almost all results presented are numerical. The Lax criterion
was first introduced in a different context for hyperbolic systems of conservation laws and later
[6–8] for conservative DVMs. Namingξ±∞ the sound waves (or characteristics) associated
to the asymptotic states atz = ±∞ andξ the shock speed, for the Lax criterion we must
satisfyξ+∞ < ξ < ξ−∞. As we shall see here analytically (lemma 1) and numerically (tables
associated with figures 2–4), it results from both a common direction for the shock and sound
waves and the supersonic and subsonic inequalities.

In section 3 for the class of models defined in section 2 we obtain general results for the
nonconservative (except mass) models. We determine analytically the sound waves associated
to the asymptotic states and prove that only rarefactive shock can exist. This is in contrast with
conservative models for which both compressive and rarefactive shocks have been found. For
instance, for the conservative Broadwell models we prove (appendix A1) that only compressive
shocks exist. This illustrates the great difference between conservative and nonconservative
(except mass) shock solutions.

In section 4 we recall the determination of travelling waves coming from the compatibility
between different scalar Riccati equations. In sections 5–7 we study the Broadwell, hexagonal
and square models.

Throughout the following, for anyZi, zi quantities we define

Z±i,j = Zi ± Zj z±i,j = zi ± zj Zi,j,...,p = Zi +Zj + · · ·Zp
zi,j,...,p = zi + zj + · · · zp. (1.2)

2. Models, evolution equations, Lax–Whitham criteria, shock inequalities

2.1. Models with opposite discrete velocities in the(x, y) plane

In figure 1 we present some planard = 2 models with two coordinates for the velocities
which are symmetric with respect to both thex- and y-axes: the 4vi Broadwell with
velocity coordinates(±1, 0), (0,±1), the 6vi hexagonal model with velocities(±1, 0),
(± 1

2,±
√

3/2), the 8vi square model without a rest particle(±1,±1), (±1, 0), (0,±1)
and adding a rest particle(0, 0) the 9vi , and finally the 4pvi nestedp-square model. We
will consider only oned = 3 Broadwell model with three coordinates for the velocities:
(±1, 0, 0), (0,±1, 0), (0, 0,±1).

The one spatial dimensionalx, t solutions, depending only on the spatial coordinatex,
have independent densitiesNi(x, t), i = 1, 2, . . . . For the planar models those associated
to velocities(xi, yi) with the samexi = ei value but oppositeyi values are equal. TheNi
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Figure 2.

associated to velocities(xi = ei, yi = 0) along thex-axis have multiplicityαi = 1 and for
anyNi exists anotherNj with a velocityej = −ei along thex-axis. In contrast those with
velocities (xi = ei,±yi 6= 0) are equal with multiplicityαi = 2. Finally, for any velocityEvi
with anx-axis projectionei 6= 0 there exists anotherEvj such thatEvi + Evj = (0, 0), ej + ei = 0
and anotherEvk with Evi + Evk = 2(ei, 0). Only for thed = 3 Broadwell model, do the densities
associated to(±1, 0, 0) haveαi = 1, while the four other densities with projections on the
x-axisxi = 0 correspond to one density withαi = 4.

For the one-dimensional solutionsNi(x, t) we define the macroscopic total massρ, the
momentumJ along thex-axis and the elastic binary collisions ColNi :

ρ =
∑

αjNj J =
∑

αieiNi ColNi =
∑
j,k,l

a
k,l
i,j (NkNl −NjNi) (2.1)

whereak,li,j is the transition probability of the collision (Evi, Evj ) → (Evk, Evl). For the square
Broadwell model we haveρ = N+

1,2 + 2N3, J = N−1,2, with multiplicity 1 for N1, N2

and ei = ±1 while e3 = 0, α3 = 2 for N3 = N4. For the hexagonal model we have
ρ = N+

1,4 + 2N+
2,3, J = N−1,4 + N−2,3, and seeN2 = N6, N3 = N5 with αi = 2 andei = ± 1

2
while ei = ±1 andαi = 1 forN1, N4. For the squaresρ = N0,1,5 + 2N2,3,4, J = N−1,5 + 2N−2,4,
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Figure 3.

we seeN2 = N8, N3 = N7, N4 = N5 with αi = 2 andei = ±1, 0. Of course for the
rest particleN0 we haveα0 = 1 ande0 = 0. For theqth nested square with densities
Ni = N4(q−1)+j , j = 1, 2, 3, 4 we have forq oddαi = 1 andei = ±2(q−1)/2 or αi = 2 and
ei = 0. Forq even we always haveαi = 2 andei = ±2q/2−1. We can also construct other
nested-polygonial models like the nested hexagons with similar properties. For thed = 3
Broadwell model with opposite velocities±1 along the thirdz-axis we see that for thex-
dependent solution the only change is forN3 with α3 = 4 andρ = N+

1,2 + 4N3. Otherd = 3
models exist with a similar structure andαi = 2(d − 1) but it can be eight. For brevity they
are not considered.

Consequently, for all these models:
∑
ei =

∑
eiαi = 0.

2.2. Evolution equations for the conservative, nonconservative and nonconservative (except
mass) models

First, for theconservativemodels we write theNi(z = x − ξ t) evolution equations:

Li = (∂t + ei∂x)Ni = ∂z(−ξ + ei)Ni = Ri = ColNi . (2.2a)



6484 H Cornille

Figure 4.

We obtain, mulplying byei , αiei and summing, both theρ andJ equations:

Lρ = ∂tρ + ∂xJ = ∂z(−ξρ + J ) = Rρ = 0
∑

αiColNi = 0 (2.2b)

LJ = ∂tJ + ∂xρJ = ∂z(−ξJ + ρJ ) = RJ = 0
∑

αieiColNi = 0 ρJ =
∑

e2
i αiNi.

(2.2c)

Secondly, for thenonconservativemodels we write theNi evolution equations and still,
multiplying by ei, αiei and summing, the mass and momentum along thex-axis relations
which are not conservative:

Li = (∂t + ei∂x)Ni = ∂z(−ξ + ei)Ni = Ri = ColNi + κi(αρ
2 + ηρ)−Ni(βρ + ε) + Si

(2.3a)

Lρ = ∂tρ + ∂xJ = ∂z(−ξρ + J ) = Rρ = (α − β)ρ2 + (η − ε)ρ + Sρ Sρ :=
∑

αjSj

(2.3b)

LJ = ∂tJ + ∂xρJ = ∂z(−ξJ + ρJ ) = RJ = κJ [αρ2 + ηρ] + SJ − J (βρ + ε)

κJ =
∑

eiαiκi SJ =
∑

eiαiSi . (2.3c)
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ColNi are the only terms present in the conservative models. The others are the nonconservative
terms [2, 3]:β > 0, ε > 0 (α > 0, η > 0) for the destruction (creation) of test particles as a
result ofinelastic collisions which can be quadratic or linear in the densities.Theκi ∈ (0, 1)
with

∑
αiκi = 1 represent the fractions of secondary particles generated with velocitiesej

along thex-axis. As usual,Si > 0 (<0) are constants associated to theexternal sources (sinks).
Thirdly, we consider nonconservative (except mass) DVMs. In order to establish some

link between conservative and nonconservative DVMs, we keep the mass conservation relation
Lρ = Rρ with Rρ ≡ 0 or α = β, η = ε, Sρ = 0 and obtain an intermediate class of
models. The amount of test particles created or annihilated as well as the sum of sources
and sinks is globally zero. Of course the momentum and energy relations are not conserved
relations, and the fraction of secondary particlesκi is not modified. As a consequence we
will try to extend important properties of the conservative models for shock waves, namely to
check the Whitham–Lax criteria and the shock inequalities. Withρ, J, still defined in (2.1),
ColNi satisfying (2.1)–(2.2c) andρJ , κJ , SJ in (2.2c)–(2.3c) we rewrite the equations for the
densities with elastic collisions and nonconservative terms, the mass conservation (without
nonconservative terms) and the momentum relation (with nonconservative terms), but without
elastic collisions.

densities: (∂t + ei∂x)Ni = ∂z(−ξ + ei)Ni = ColNi + (αρ + η)(κiρ −Ni) + Si (2.4a)

mass: ∂tρ + ∂xJ = ∂z(−ξρ + J ) = 0 Sρ = 0 β = α ε = η (2.4b)

momentum: ∂tJ + ∂xρJ = ∂z(−ξJ + ρJ ) = (αρ + η)(κJ ρ − J ) + SJ . (2.4c)

2.3. Asymptotic states, Lax–Whitham criteria, shock inequalities

In the following we consider DVMs satisfying only the mass conservation (2.4a)–(2.4c). For
travelling wavesNi(z = x − ξ t) with wave speedξ we assume, from the vanishing of the rhs
in (2.4a), the existence of two asymptotic states (0) and (s) when|z| → ∞:

• (0) with n0i , ρ0 =
∑
αin0i , j0 =

∑
αiein0i ;

• (s) with nsi = n0i + ni , ρs =
∑
αinsi = ρ0 + ρ1, js =

∑
eiαinsi = j0 + j1.

Densities: − Si = Coln0i + (αρ0 + η)(κiρ0 − n0i ) = Colnsi + (aρs + η)(κiρs − nsi). (2.5a)

The mass conservation∂z(−ξρ + J ) = 0 can be integrated leading to the jump relation:

mass: def: V0 = j0/ρ0 − ξ Vs = js/ρs − ξ → V0ρ0 = Vsρs
V0Vs > 0 j1 = ξρ1.

(2.5b)

The vanishing of the rhs of the momentum (2.4c) where we introduce (2.5b) remains:

momentum: − SJ = (αρs + η)(κJ ρs − js) = (αρ0 + η)(κJ ρ0 − j0)

→ (αρs + η)(κJ − ξ) = α(j0 − κJ ρ0) and ρ0
→← ρs, j0

→← js. (2.5c)

The last (2.5c) relation, mixingξ, ρ0, ρs and the nonconservative terms, is very important.

Whitham criterion. Linearizing around an asymptotic state we get a sum of linear differential
operators of a different order, the lower giving the characteristics (sound waves). For two
successive operators Whitham has given a criterion such that the lower is dominant when
t →∞:[ p+1∏
j=1

(∂t + cj ∂x) + λ
p∏
j=1

(∂t + aj∂x)

]
8(x, t) = 0 λ > 0 c1 > a1 > c2 · · · > ap > cp+1.

(2.6)
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In order to understand the difficulty of a complete proof of the different Whitham criteria,
let us consider our nonconservative (except mass) models where the lowest operator is of the
first order with, for instance, characteristic speedξ0 at the (0) asymptotic state. The next order
operator is second order with wave speedsc1 > c2. We must prove thatc1 > ξ0 > c2. The next
one is of third order with speedsd1 > d2 > d3 and we must check the interlacing properties
d1 > c1 > d2 > c2 > d3 and so on. In general we have only verified this numerically. In
contrast, for conservative DVMs the asymptotic states correspond to vanishing elastic collision
terms and both general [6, 7] (binary collisions), and particular [8] results (multiple collisions)
have been obtained.

Lax criterion. Let ξ be the shock speed, andξ0, ξs the speeds of the sound waves or
characteristics associated to the (0), (s) states and compare these with the shock speedξ .
If we haveξ0 ≶ ξ ≶ ξs then the (0) state must be on the right or on the left (conversely for
the (s) state). For our travelling waves right and left means asymptotic states at±∞. So we
define asξ±∞ the characteristics associated to the states at±∞ (which are eitherξ0, or ξs).
For the Lax criterion [5–8] they must satisfy:ξ∞ < ξ < ξ−∞ (with the same index if there
exist more than oneξ0, ξs).

Shock inequalities. To the shock wavesV0, Vs satisfying the jump condition (2.5) with
V0Vs > 0 we associate the wavesW0 = j0/ρ0 − ξ0, Ws = js/ρs − ξs at the (0), (s)
states and they must satisfy the shock inequalities. The direction of the shock (from the
upstream to the downstream state) is given by the common sign ofV0, Vs . If it is positive
then the upstream is at−∞ and the downstream at +∞ (the converse if it is negative). If the
(0) state is in an upstream state we must have the supersonic inequality|V0| > |W0| while
if it is downstream, the subsonic inequality|V0| < |W0| (similarly for the (s) state). We
redefine these shock inequalities from the unknown states at±∞. Letρ±, j±, ξ± be the mass,
momentum and sound-wave speed atz = ±∞ and defineV± = j±/ρ±−ξ ,W± = j±/ρ±−ξ±
(V±,W± can be eitherV0,W0 or Vs,Ws). For an upstream state at±∞ we must satisfy the
supersonic inequality|V±| > |W±| and for a downstream state at±∞ the subsonic inequality
|V±| < |W±|.

Assumptions which are usual.From the jump relationV0ρ0 = Vsρs with ρ0 > 0, ρs > 0
the direction of the shock is given by the common sign ofV0, Vs . Let us assumeV0 > 0, a
positive direction of the shock and the (0) state atz = −∞. The (0) state is the upstream state
and we must verify a supersonic inequality. IfW0 < 0, the shock wave and the sound-wave
perturbation propagate in opposite directions and, as stated in the literature [6], physically we
cannot say that the shock is supersonic. Similarly at the downstream ifVs > 0,Ws < 0. So
we assume that the sound wavesW0,Ws also have the shock-wave direction, the subsonic and
supersonic inequalities for both the shock and sound waves.

Lemma 1. If the shock inequalities are satisfied then the Lax criterion is also satisfied.

For the proofs we have two cases:V0 > 0, < 0 with a positive and negative direction of
the shock.

(1) V0 > 0, then the upstream is at−∞ with a supersonic inequalityV− = j−/ρ− − ξ >
W− = j−/ρ− − ξ− or ξ < ξ−, and the downstream at +∞ with a subsonic inequality
V+ < W+ or ξ+ < ξ and the Lax criterion is satisfiedξ+ < ξ < ξ−.
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(2) V0 < 0, then the upstream is at +∞ with a supersonic inequality−V+ = −j+/ρ+ + ξ >
−W+ = −j+/ρ+ + ξ+ or ξ+ < ξ , and the downstream at−∞ with a subsonic inequality
−W− > V− or ξ < ξ− with the Lax criterion.

Soξ is necessarily in the interval(ξ0, ξs) but we do not know whetherξ0 ≷ ξs .

3. General results without explicit solutions

We will obtain general results for any DVMs (without the construction of explicit solutions)
satisfyingonly one conservative relation(the mass conservative relation) and a nonconservative
momentum relation of the type (2.4c) (as for the nonconservative, except mass, models). First,
linearizing around the (0) state we will get for all nonconservative (except mass) DVMs, with
equations written in (2.4a)–(2.4c) (except the two-velocity models [4] not considered here),
the same expression for the sound wavesξ0 (ξs) associated to (0), (s):

[ρ0α + η][κJ − ξ0] = α[j0 − κJ ρ0] and ξ0, ρ0, j0→ ξs, ρs, js . (3.1)

Second, we will consider only the mass conservation, with the jump relation (2.5b), the
existence of two asymptotic states (0), (s) satisfying the vanishing relations of the momentum
modified relations (2.5c), V0 giving the direction of the shock and the shock inequalities.We
will prove that only rarefactive shocks can exist.

3.1. Linearization around the (0) state

With the (2.4b), (2.4a), (2.4c) linear and nonlinear system we assumeρ ' ρ0[1 + Xρ(z)],
J ' j0[1 + XJ (z)] andNi = n0i [1 + Xi(z)] with z = x − ζ t , respectively. For a model
with p independent densities we linearize with the system ofXρ,Xj and(p− 2) Xi and take
the determinant. From (2.4b) the first row, for the mass conservation, contains only∂t and
∂x . Consequently, the lowest order operator is of first order and the associatedζ polynomial
is linear. From (2.4c) the second row, for the momentum, has constant terms given from the
rhs only forXρ , XJ . The remaining terms contain derivatives∂x, ∂t . For the determination
of the characteristicsζ = ξ0 it is sufficient to consider constant terms in the rows different
from the first one, corresponding to (2.4a)–(2.4c). In particular, in the second row for the
momentum, except for the first and the second column, all other terms are zero. This is the
main reason why we obtain the sound waves only from the mass and momentum relations
where forz = z0 = x − ξ0t we have∂t = −ξ0∂z0, ∂x = ∂z0:∣∣∣∣∣∣∣∣∣
∂t ∂x 0 0. . . 0
−Aρ AJ 0 0. . . 0
A31 A32 A33 . . . A3p

· · · . . . ·
Ap1 Ap2 Ap3 . . . App

∣∣∣∣∣∣∣∣∣ = 0= (∂tAJ + ∂xAρ)

∣∣∣∣∣A33 . . . A3p

· . . . . . .

Ap3 . . . App

∣∣∣∣∣ = 0 (3.2)

AJ = αρ0 + η > 0 Aρ = (2αρ0 + η)κJ − αj0→ ξ0 = Aρ/AJ (3.3)

and we recover the (3.1) results for the sound wavesξ0, ρ0, j0 andξs, ρs, js .

3.2. Rarefactive shocks for the nonconservative (except mass) models

We recallV0, Vs written in (2.5b) and notice that in (3.1) and in the last (2.5c) relation the rhs
are the same. This means that direct relations exist between the shock-wave speedξ and the
sound-wave speedsξ0, ξs :

[αρs + η][κJ − ξ ] = α(j0 − κJ ρ0) = αρ0[V0 − (κJ − ξ)] = [αρ0 + η][κJ − ξ0] (3.4a)

[αρ0 + η][κJ − ξ ] = α(js − κJ ρs) = αρs [Vs − (κJ − ξ)] = [αρs + η][κJ − ξs ]. (3.4b)



6488 H Cornille

For the linear nonconservative modelsα = 0, η 6= 0, from (3.4a), (3.4b) we getκJ = ξ =
ξ0 = ξs , V0 = W0, Vs = Ws without possible shock inequalities. In the following we assume
α 6= 0.

Lemma 1(i). From (3.4a), (3.4b) we getV0(κJ−ξ) > 0,Vs(κJ−ξ) > 0and verifyξ ∈ (ξ0, ξs).

For the proof of the first result we get from the positivity ofα, η, ρ0, ρs and (3.4a):
(αρs + η)/αρ0) = V0/(κJ − ξ) − 1 > 0 and similarly from (3.4b). For the second result we
subtract the first and last terms in both (3.4a), (3.4b) with positiveα, η, ρ0, ρs :

αρ1(κJ − ξ) = (αρ0 + η)(ξ − ξ0) = (αρs + η)(ξs − ξ). (3.4c)

Theorem 1. The shocks are rarefactive for nonconservative (except mass) DVMs.

For the proofs we must show thatρ is larger upstream than downstream. We have four
different cases:ρ1 = ρs − ρ0 ≷ 0 andκJ ≷ ξ .

(1) κJ > ξ giving V0 > 0 from lemma 1(i) and a positive direction with the upstream
(downstream) states atz = ∓∞.

(1.1) ρ1 > 0. From (3.4a), (3.4b) we deduceκJ − ξs < κJ − ξ < κJ − ξ0, ξ0 < ξ < ξs →
V0−W0 = ξ0− ξ < 0 orV0 < W0 with a subsonic (0) downstream state inequality.
The upstream state is the (s) state withρs > ρ0 andρ decreases from the upstream
to the downstream states.

(1.2) ρ1 < 0. We deduceξs < ξ < ξ0, V0 > W0 with a supersonic (0) state inequality and
a massρ0 > ρs at the downstream (s) state.

(2) κJ < ξ giving V0 < 0, a negative direction of the shock with the upstream (downstream)
states atz = ±∞.

(2.1) ρ1 > 0 givingρs > ρ0, ξs < ξ < ξ0, W0 < V0 < 0 and a subsonic downstream (0)
state withρ0 less thanρs at the upstream.

(2.2) ρ1 < 0 with ξ0 < ξ < ξs , V0 < W0 < 0 and a supersonic (0) upstream state
|V0| > |W0| inequality withρ0 larger thanρs downstream.

In order to verify that these possible rarefactive shocks really exist, with decreasing pressure,
we must construct explicit solutions and, for instance, verify that the positivity for the densities
n0i > 0, ns,i > 0 are satisfied. This is the goal of the following sections.

4. Travelling waves as compatible scalar Riccati solutions

In [4, 5] we gave the method in order to obtain, from a quasi-linear systemLi [Ni ] = Ri [Ni ],
exact travelling wavesNi(z = x − ξ t) solutions which result from the compatibility between
p different scalar Riccati solutions. We briefly recall the method. TheLi are linear differential
x, t operators, for instance as in (2.4a) Li = ∂t + ei∂x = (−ξ + ei)∂z, but they can also be a
sum of such terms. TheRi [Ni ] = Ri(N1, N2, . . . , Np) are sums of quadratic nonlinear terms
in N1, N2 . . . as in (2.4a)–(2.4c) but they can also contain linear terms and constants.

We assume that allNi(z) are linear functions of the sameN(z) function with two
asymptotic states (0):n0i and (s): nsi = n0i + ni corresponding toRi [n0i ] = Ri [nsi ] = 0:

Ni(z) = n0i + niN(z = x − ξ t) ρ(z) = ρ0 + ρ1N(z) J (z) = j0 + j1N(z). (4.1)

We substitute (4.1) intoRi [Ni ] and from Ri [n0i ] = Ri [n0i + ni ] = 0 we deduce for
Ri [n0i + ni ] − Ri [n0i ] = 0 a sum of terms quadraticBi and linear−Bi in [ni ] = n1, n2, . . . .

We can rewrite the rhs asRi = BiN(N − 1). On the other hand, the lhs can be written
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Li = CidN/dz so that we are reduced to a setCidN/dz = BiN(N − 1) of scalar Riccati
equations which are compatible only ifγi := Bi/Ci give the same constant for alli = 1, . . . , p,

dN/dz = γiN(z)(N(z)− 1) conditions:γ = γ1 = γ2 = · · · → N(z) = [1 + eγ z]−1

(4.2)

andNi → n0i , nsi when |z| → ∞. Applying this method to the travelling (2.4a)–(2.4c)
DVMs, we add to the (2.5a)–(2.5c) relations for the densities and the momentum relations:

γi(−ξ + ei)ni = Colni + αρ1(κiρ1− ni) γ = γ1 = γ2 . . . (4.3a)

def: ρ̄J :=
∑

e2
i αini/ρ1 CLax := ρ̄J − ξ2 γCLax = αρ1(κJ − ξ). (4.3b)

We prove that theLax criterion and the shock inequalities are satisfied only ifCLax > 0.

Theorem 2. For nonexplicit scalar Riccati solutions the Lax Criterion is satisfied (not) if
CLax > 0 (< 0) and, from (4.3b), γρ1(κJ − ξ) > 0 if CLax > 0.

For the proof we notice from (4.2)–(4.3b) thatγ ≷ 0→ (0) state atz = ±∞ and (s) at
z = ∓∞, while γCLax written in (4.3b) is equal to the terms written in (3.4c):

γCLax = (αρ0 + η)(ξ − ξ0) = (αρs + η)(ξs − ξ). (4.4)

We get two casesξ0 ≶ ξ ≶ ξs associated toγCLax ≷ 0. Consequently withCLax > 0, γ > 0
thenρ0 = ρ+∞ andξ0 < ξ < ξs while if γ < 0 thenρs = ρ+∞ andξs < ξ < ξ0. In contrast
if CLax < 0 we findξ−∞ < ξ < ξ+∞ in both cases.

In sections 5–7 we explicitly construct compatible travelling solutionsfor the Broadwell,
6vi, 8vi, 9vi nonconservative DVMs and give examples (CLax > 0) with Lax and shock
inequalities satisfied. For the Whitham criterion, the sound waves being given with a linear
polynomial,interlacing properties with higher polynomials are deduced numerically.

5. Shock waves for Broadwelld = 2, 4vi, d = 3, 6vi models

With three independent densities (cf figure 1)N1, N2, N3 andx-coordinatesei = ±1, 0 or
equivalentlyρ, J,N3, we have three evolution equations. We write the mass and momentum
conservations (2.4b), (2.4c) without elastic collisions and finallyN3 (multiplicity 2(d − 1))
with collisions. We recall for the mass the jump relation and write the other two as:

ρ = N+
12 + 2(d − 1)N3 J = N−12 ρJ = ρ1− 2(d − 1)N3 κJ = κ−12

Lρ = ∂tρ + ∂xJ = 0 j1 = ξρ1 Sρ = S+
12 + 2(d − 1)S3 = 0

LJ = ∂tJ + ∂xρJ = ∂z(−ξJ + ρJ ) = (αρ + η)(ρκJ − J ) + SJ SJ = S−12

L3 = ∂tN3 = −ξ∂zN3 = R3 = σ(N1N2 −N2
3 )/(d − 1) + (αρ + η)(κ3ρ −N3) + S3

(5.1)

Ni = n0i + niN(z) ρ = ρ0 + ρ1N(z) J = j0 + j1N(z). (5.2)

5.1. Conservative Broadwell model:Ni(z = x − ξ t), i = 1, 2, 3 andSi = α = η = 0

(1− ξ)N1,z = −(1 + ξ)N2,z = (d − 1)ξN3,z = σ(N2
3 −N1N2). (5.3)

The interest (appendix A1), for this DVM which has been the most extensively studied, is an
analytical proof (withV0 giving the shock direction and shock inequalities satisfied) that the
only possible shocks are compressive, contrary to the nonconservative case where they are
only rarefactive. First, we show (lemma 2) that we know the states at±∞ from the sign of
ξρ1 and (lemma 4) that the sign ofV0 is known fromξV0 < 0. Second, we show (lemma 3),
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for thed = 2 model, that the shock speed satisfies|ξ | < 1 (and for the isotropic (0) state for
d = 3). Third (theorem 3), we show that the shocks are compressive. The main difference
between the two theories, for the same model, is that the conservative sound waves are roots
of a quadratic polynomial while the nonconservative (except mass) sound waves are roots of
a linear polynomial. For the conservative Broadwell model, with two conservation relations,
the last evolution equation is a scalar Riccati equation which is completely integrable [9]. This
means that the presented results are general and not restricted to a particular class of solutions.

5.2. Nonconservative Broadwell model:Si 6= 0, α 6= 0

Linearizing around (0) we get a 3× 3 Xρ,XJ ,X3 linear system with three operators:
�3 = ∂t (∂2

t2
− ∂2

x2), (roots±1, 0),�2, �1 = AJB0(∂t + ξ0∂x)→ ξ0 written in (3.1)–(3.3):

�3 +�2 +�1 =
∣∣∣∣∣ ∂t ∂x 0
∂x − Aρ ∂t +AJ −2(d − 1)∂x
Bρ BJ ∂t +B0

∣∣∣∣∣ = 0

B0 := AJ + σ(n01 + n02 + 2n03/(d − 1)) > 0 BJ2(d − 1) = σj0 > 0

Bρ = −(2αρ0 + η)κ3 + αn03− σ(n01 + n02)/2
�2 = ∂2

t2(B0 +AJ ) + ∂2
xt (2(d − 1)BJ +Aρ)− ∂2

x2(B0 + 2(d − 1)Bρ).

(5.4)

With AJB0 > 0, B0 +AJ > 0 part of the Whitham conditions are satisfied.
For�2 we associateP2(ζ ) with rootsP2(ζ0±) = 0. From positivity we getP2(±1) > 0

for d = 2, 3 while only ford = 2 and symmetric modelsκi = 1
4 we get analyticallyP2(0) =

−[η/2 + 2(σ + α)n03] < 0 with the interlacing Whitham property−1 < ζ− < 0 < ζ+ < 1
satisfied for�3, �2 (in the other cases the property has been only verified numerically).

For�2, �1, the Whitham criteriaζ0− < ξ0 < ζ0+ andζs− < ξs < ζs+, have only been
verified numerically.

The exact solutions (5.2) and section 4 studied in appendix A2, result from the
compatibility between two scalar Riccati equations forJ,N3 (γJ = γ3). The mass conservation
gives the jump relation between the asymptotic states while both the nonconservative
momentum andN3 evolution equations give four relations for the asymptotic states and two
for the compatible Riccati solutions.

We recall [10] that from the knowledge of the (0), (s) states we can predict the existence
(or not) of overshoots for the internal energy' P/ρ, depending whetherj0js < 0 (or not).
(For Broadwell and hexagonal models we haveP ' ρ[1− (j/ρ)2] for the pressure.)

In the figures 2(a)–(b), for d = 2, 3, see table 2 (with Lax–Whitham criteria and shock
inequalities satisfied) we have rarefactive shocks.ρ0, ξ0, P0 are atz = +∞, but, except for
figure 2(a), d = 2 with upstream atz = +∞, in all other cases they are at−∞. In figure 2(a)
(figure 2(b)) we haveP/ρ with (without) overshoots.

In the original Broadwell model the loss and gain elastic collision terms are zero at one
asymptotic state. Here (except in figure 2(a), d = 2) we choose such solutions at the (0) state
with n01 = 1, n02 = n03 = 0. Consequently,Ni(z)/nsi are equal fori = 2, 3, ρ0 = j0 = 1
and for the pressureP0 = 0. We notice that we can have either an overshoot in figure 2(a),
d = 3 or monotonic internal energy in figure 2(b). In contrast for ‘homogeneous’ solutions (all
densities equal at one asymptotic state), due to eitherj0 = 0 or js = 0, the productj0js = 0
and we cannot have overshoots.

We notice that for the solutions presented in figures 2(a) and (b) (as in figures 3(a) and (b),
4(a) and (b)) theSi do not have the same sign, they can be either sources or sinks. The reason is
that in order to retain the mass conservation the global amount of sources and sinks must be zero,
contrary to the pure nonconservative models where we can have either only sources or sinks.
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5.3. Comparison between conservative and nonconservative Broadwell models

The main difference is that the shocks are compressive (rarefactive) for conservative
(nonconservative) models. In the conservative case the two main properties areγ ξρ1 >

0, ξV0 < 0 (lemmas 2–4), while in the nonconservative case they areγ (κJ − ξ)ρ1 >

0, (κj − ξ)V0 > 0 (theorem 2, lemma 1(i)). In the four cases (theorems 1–3 with (1.1)–
(2.2)), the locations of the (0) or(s) states at±∞ as well asρs ≷ ρ0 are the same. The
difference is that the directions of the shocks (sign ofV0) are opposite, such that from the
upstream to the downstream states,ρ increases (conservative) or decreases (nonconservative).

6. Hexagonal 6vi model with ρ = N+
1,4 + 2N+

2,3, J = N−1,4 +N−2,3

We have four independent densities (cf figure 1)N1, N4 andN2, N3 (multiplicity two) with
x-coordinates(±1,± 1

2) and the four evolution equations written in appendix B1. First, for
evolution equations without elastic collisions, we still have both the mass conservation (2.4b)–
(2.5b), with the jump relationj1 = ρ1ξ andSρ = S+

14+2S+
23 = 0, and the modified momentum

(2.4c)–(2.5c) with: κJ = κ+
12 − κ+

34, ρJ = ρ − 3N+
23/2. Second, with only binary elastic

collisions we have another relation without elastic collisions forN−2,3.
In the conservative model this is a ‘spurious conservation law’ with sound-wave roots of

a cubic polynomial (cf the study of shock waves in [6]),while for the true physical hexagonal
model, adding cubic elastic collisions, the sound waves are roots of a quadratic polynomial.
Here for the nonconservative (except mass) model the ‘spurious relation’ disappears and we can
restrict our study to binary collisions, but for this reason we will not compare the conservative
and nonconservative shock solutions.

To the mass conservative and momentum nonconservative relations we add a thirdN2−N3

evolution equation without elastic collisions (it is a ‘spurious relation’ for the conservative
model) and finally theN2 equation with elastic collisions:

∂tN
−
2,3 + ∂xN

+
2,3/2= ∂z(−ξN−2,3−N+

23) = (αρ + η)(ρκ−2,3−N−2,3) + S−23

(∂t + ∂x/2)N2 = ∂z(−ξ + 1/2)N2 = σ(N1N4 −N2N3) + (αρ + η)(ρκ2 −N2) + S2.
(6.1)

The exact solutions (4.1)–(4.3), studied in appendix B1, result from the compatibility between
three scalar Riccati equationsfor J, N−2,3, N2 requiringγJ = γ23 = γ2.

Linearizing around the (0) state we have four operators:�4 = (∂2
t2
− ∂2

x2)(∂
2
t2
− ∂2

x2/4).
(roots±1,± 1

2), �3, �2 (written in appendix B2) (rootsζ0± with verificationξ0 ∈ [ζ0+, ζ0−]
numerical) and�1 for the sound waves written in (3.1)–(3.3).

We present, see table 2, in figures 3(a) and (b) solutions with the Lax–Whitham criteria and
shock inequalities satisfied, and rarefactive shocks. In figures 3(a) and (b) we have downstream
ρs, ξs, Ps at z = +∞, and upstream (0) state atz = −∞ andj0js ≶ 0 with (without)P/ρ
overshoot.

7. Squares 8vi (9vi) without (with) rest particle

7.1. Square8vi model withρ = N+
1,5 + 2(N+

2,4 +N3), J = N−1,5 + 2N−2,4

We have five independent densities (cf figure 1)N1, N5 andN2, N3, N4 (multiplicity two) with
x-coordinates(±1, 1, 0,−1) and the five evolution equations written in appendix C1. We
have three equations without elastic collisions. First, the mass conservation (2.4b)–(2.5b) still
with the jump relationj1 = ρ1ξ andSρ = S+

15 + 2(S+
24 + S3) = 0, second the nonconservative

momentum (2.4c)–(2.5c) with κJ = κ−15 + 2κ−24, ρJ = ρ − 2N3 and third the nonconservative
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Table 3. Square 8vi model.

α, η, ρs < ρ0 κ1, κ2, κ3, κ4, κ5 S1, S2, S3, S4, S5, Ps < P0

0.1, 0.31, 0.92< 0.93 3.10−3, 0.296, 5.10−3, 0.013 −0.24, 0.37,−0.277, 0.3, 0.04, 0.1075, 0.693< 0.73
ξ0 < ξ < ξs ζ0+ < ζ0−, ζs− < ζs+ Ws < Vs < V0 < W0

0.849, 0.85, 0.855 −0.639, 0.908,−0.638, 0.914 −1.528,−1.522,−1.506,−1.501

relation for the energy or equivalently forN+
24 = N2 +N4. Finally, we write the equations for

N2, N3 with two elastic collision termsC1, C2:

∂tN
+
2,4 + ∂xN

−
2,4 = ∂z(−ξN+

2,4 +N−2,4) = (αρ + η)(ρκ+
2,4 −N+

2,4) + S+
2,4

(∂t + ∂x)N2 = ∂z(−ξ + 1)N2 = σ2C2 + (αρ + η)(ρκ2 −N2) + S2 C2 := N1N4 −N2N5

∂tN3 = −ξ∂zN3 = σ1C1 + (αρ + η)(ρκ3−N3) + S3 C1 := N1N5−N2
3 .

(7.1)

The exact solutions (4.1)–(4.3), studied in appendix C1, result from the compatibility between
the four scalar Riccati equationsfor J,N+

2,4, N2, N3 with γJ = γ2,4 = γ3 = γ2.
Linearizing around the (0)statewe have five operators:�5 = ∂t (∂2

t2
−∂2

x2)
2 (roots 0,±1),

�4, �3 and�2 with rootsζ0,± (written in appendix C2) and only anumerical verificationof
the Whitham criterionξ0 ∈ [ζ0+, ζ0−] with ξ0 for �1 (see (3.1)–(3.3)). In figure 4(a), see
table 3, we present a rarefactive shock with the Lax–Whitham and shock inequalities satisfied
and (ρs, Ps) < (ρ0, P0), (0) being the upstream at∞ and(s) the downstream at−∞.

7.2. Square9vi model withρ = N0 +N+
1,5 + 2(N+

2,4 +N3), J = N−1,5 + 2N−2,4

To the previousNi, i = 1 . . .5 we add a rest particleN0 with x-coordinate (0). In the mass
conservation (2.4b)–(2.5b), with j1 = ρ1ξ , we haveSρ = S0 + S+

1,5 + 2(S+
2,4 + S3) = 0 and in

the nonconservative momentum relation:κJ = κ−1,5 + 2κ−2,4, ρJ = ρ − 2N3−N0.
We have a third equation, without elastic collisions, for the energy or equivalently for

N+
2,4−N0/2 := N240 with κ240= κ+

2,4− κ0/2,S240= S+
24− S0/2. We add threeN+

23, N0, N
+
34

equations with four elastic collision termsC1, C2, C0, C̄0 that we write:

∂tz(−ξN240 +N−2,4) = (αρ + η)(ρκ240−N240) + S240 C0 = N1N3−N0N2

−∂zξN0 = 2σ0[C0 + C̄0] + (αρ + η)(ρκ0 −N0) + S0 C̄0 = N5N3−N0N4
(7.2)

∂z(−ξN+
2,3 +N2) = σ2C2 + σ1C1− σ0C̄0 + (αρ + η)(ρκ+

23−N+
2,3) + S+

2,3

∂z(−ξN+
3,4 −N4) = −σ2C2 + σ1C1− σ0C0 + (αρ + η)(ρκ+

3,4 −N+
3,4) + S+

3,4.
(7.3)

The exact solutions (4.1)–(4.3), studied in appendix D, result from the compatibility between
five scalar Riccati equationsfor J,N240, N

+
2,3, N0, N

+
3,4 with γJ = γ240= γ23 = γ0 = γ34.

Linearizing around the (0) state we have six operators:�6 = ∂2
t (∂

2
t2
− ∂2

x2)
2 (roots 0,±1),

�5, �4, �3, �2 (not presented) and�1, with ξ0 written in (3.1)–(3.3).
In figure 4(b), see table 4, we present a solution (S̄i := 106Si, κ̄i := 103κi, ρ̄0 :=

103ρ0, P̄0 := 103P0, . . .), with the Lax–Whitham and shock inequalities satisfied, which
is a rarefactive shock. The upstream (s) state is at−∞ and the (0) downstream at∞ with
(ρs, Ps) > (ρ0, P0).
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Table 4. Square 9vi model.

α, η κ̄0, κ̄1, κ̄2, κ̄3, κ̄4, κ̄5 S̄0, S̄1, S̄2, S̄3, S̄4, S̄5

1.0, 0.02 58.0, 45.0, 40.0, 54.0, 233.0, 239.0 4.0, 25.0, 16.0, 17.0,−35.0,−27.0
ξ0 < ξ < ξs ρ̄0 < ρ̄s , P̄0 < P̄s Ws < Vs < V0 < W0

−0.76,−0.7,−0.66 9.0, 23.0, 12.0, 29.0 0.235, 0.274, 0.7, 0.757

8. Conclusion

Our motivation was to find an intermediate class of models, between the standard
nonconservative models and the conservative ones, such that some very useful properties of the
conservative models could subsist. This is possible with a restriction of the nonconservative
parameters such that only the mass conservation law (with macroscopic quantities mass and
momentum) be retained. For these models the amount of creation–annihilation particles and
sources and sinks is globally zero for the mass conservation, but remains at the microscopic level
for the densities, as well as for the other conservation laws which do not only share macroscopic
quantities. Since the pioneering Broadwell work, contrary to the nonconservative DVMs, a
major application of the conservative DVMs has been the study of shock waves. For the
modified nonconservative models (with mass conservation), for travelling waves, we discuss
both the Lax–Whitham criteria and shock inequalities. For these models (more than 2vi),
with momentum conserved in the associated conservative DVMs, we have found ageneral
result from only the conservative mass and nonconservative momentum evolution equations.
The sound waves are the same for all models and depend on the nonconservative parameters.
Consequently, even without explicit solutions, we can discuss the Lax criterion and shock
inequalities (section 3). With the shock direction given by the sign of the four quantities
V±∞ = V±, W±∞ = W± (the ratio of the momentum to the mass minus either the shock
speedξ or the sound-wave speedsξ±∞) and the shock inequalities satisfied we deduce the Lax
criterionξ+∞ < ξ < ξ−∞.

We show that only rarefactive shocks exist, in contrast with conservative models where,
in general, the shocks are compressive while rarefactive shocks have been found. As an
illustration, for theconservative Broadwell models we show that only compressive shocks
exist.

In sections 4–6 we construct explicitly compatible scalar Riccati solutions (detailed work
is found in the appendices) and verify the above general results. The new result is the
determination of a parameterCLax such that eitherCLax > 0 (or < 0) leads to both the
Lax criterion and satisfied (or not) shock inequalities. For the Whitham interlacing criterion
we do not have general analytic results and the verification is numerical.

Counting argument. Adding one more independent densityNi we only have three more
relations but four parametersκi, Si, n0i , ni and we can hope (if positivity is satisfied) to
obtain new compatible Riccati solutions for more general models. However, I think it more
useful to consider these compatible Riccati solutionssatisfying boundary conditionsas has
been done many times for the conservative models. Another possible application of these
solutions for the presented nonconservative models (done recently in discrete conservative
models [11]) is the study of evaporation–condensation processes with inversion of the internal
energy. For conservative models nonmonotonic internal energy behaviour can be predicted
from the macroscopic quantities (here we have also verified that this occurs for the presented
nonconservative models) and the same prediction was found for internal energy inversion [11].
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Appendix A. Shock waves for the Broadwell models

Appendix A.1. Conservative Broadwell models written in (5.3)

Appendix A.1.1. Solutions ford = 2, 3 and |ξ | < 1. All Ni,z being proportional we can
write forNi(z), ρ(z) = N+

1,2 + 2(d − 1)N3, J (z) = N−1,2 the (3.2) travelling waves solutions
with two asymptotic states: (0)n0i , ρ0, j0 and (s) nsi = n0i + ni , ρs = ρ0 + ρ1, js = j0 + j1

such that the associated collision terms are zeroN1N2 −N2
3 = 0 forNi = n0i , nsi :

n01n02 = n2
03 n1n2 − n2

3 + n1n02 + n2n01− 2n3n03 = 0. (A.1)

We defineσ̃ = σ/(d − 1), substituteNi(z) = n0i + niN(z) into (5.3), forN3,z get a Riccati
equation [9] forN that we integrate:

ξn3Nz = σ̃ (n1n2 − n2
3)N(N − 1) N(z) = [1 + d̄eγ z]−1 γ = σ̃ (n2

3 − n1n2)/n3ξ

(A.2)

with ρ∞ = ρ0, ρs if γ ≷ 0. Fromρ0, ρs, ξ we want to know the states at±∞ (given by theγ
sign). We definēni = ni/ρ1 and from the mass and momentum conservation laws getn̄i as a
function ofξ , substitute into (A.2) and getγ :

j1/ρ1 = ξ = n̄−1,2 n̄+
1,2 = ξ n̄−1,2 = ξ2 1= n̄+

1,2 + n̄2 + 2(d − 1)n̄3

n̄3 = (1− ξ2)/2(d − 1) n̄1 = ξ(ξ + 1)/2 n̄2 = ξ(ξ − 1)/2
γ ξ/ρ1 = σ̃ [ξ2((d − 1)2 − 1) + 1]/2(d − 1) > 0→ γ ξρ1 > 0.

(A.3)

Lemma 2. If ρ1ξ ≷ 0 thenρ+∞ = ρ0, (ρs), ρ−∞ = ρs(ρ0).

For the proof we getγ ≷ 0 from (A.3) and the result from (A.2).

Lemma 3. The shock speed satisfies, from positivity,|ξ | < 1.

From (A.1)–(A.3) we get (for brevity we prove this only ford = 2) two quadraticξ
polynomials:

P2(ξ) = ξ2(ρ0 + ρs)− 2ξjs + ρ1− 4ns3 P̃2(ξ) = ξ2(ρ0 + ρs)− 2ξj0 − ρ1− 4n03

(A.4)

deduceP2(1) = 4ns2 > 0, P2(−1) = 4ns1 > 0, P2(0) = ρ1 − 4n03 < 0 if ρ1 < 0 and
P̃2(1) = 4n02 > 0, P̃2(−1) = 4n01 > 0, P̃2(0) = −ρ1 − 4n03 < 0 if ρ1 > 0. In both cases
ρ1 ≷ 0 we deduce|ξ | < 1 and for the two rootsξ± ≷ 0. For thed = 3 model, for brevity we
consider only the isotropic case:n0 = n0i , i = 1, 2, 3, j0 = 0.

Lemma 3(i). For the isotropic(0) state, the shock speed satisfies1/d < ξ2 < 1 for ρ1 > 0
andξ2 < 1/d for ρ1 < 0.

For the proof we rewrite (A.1)–(A.3), getξ2 = ρs/(ρ0 + ρs) for d = 2 and explicitly for
d = 3, 2:

d = 2, 3: 0< n0 = ρ1(1− ξ2)[1 + ξ2((d − 1)2 − 1)]/4(d − 1)(dξ2 − 1). (A.5)
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Appendix A.1.2. Linearizing (A.1) withNi ' n0i [1 +Xi(x− ζ t)] we get a linearXi system
leading to a cubic polynomialP (0)3 (ζ = 0,±1) and a quadraticP (0)2 (ζ = ξ±0 ) = 0 for the
sound waves.

P
(0)
2 (ξ0) = α0ξ

2
0 − ξ0(d − 1)j0 − 2n03 α0 := 2n03 + (d − 1)(n01 + n02) > 0

ξ+
0 ξ
−
0 < 0.

(A.6)

With P (0)2 (0) < 0,P (0)2 (±1) > 0 the Whitham criterion forP (0)3 , P
(0)
2 is satisfied,−1< ξ−0 <

0< ξ+
0 < 1 and similarly forP (s)2 (ξ±s ) with n0i → nsi .

Lemma 4. We findξV0 < 0 for d = 2, 3.

For the proof webegin withd = 2. First we study the solutionsP (0)2 (ξ±0 ) = 0 of (A.6):

ξ±0 = (j0 ±
√
1)/2ρ0) ≷ 0 1 = j2

0 + 8n03ρ0 W±0 = j0/ρ0 − ξ±0 = ξ∓0 ≶ 0

(A.7)

and similarlyξ±s ≷ 0, W±s = js/ρs − ξ±s = ξ∓s ≶ 0. Second, with the signW±0 = ξ∓0 ,
W±s = ξ∓s , we have the same indexξ±0 , ξ

±
s for ξ0, ξs . From lemma 1ξ is in the intervalξ±0 , ξ

±
s

andξW±0 = ξξ∓ < 0 or ξV0 < 0. In conclusion we must only associate:

ξ ≷ 0→ ξ0 = ξ±0 ξs = ξ±s W0 = W±0 = ξ∓0 ≶ 0 Ws = W±s = ξ∓s ≶ 0.

We continue withd = 3 and notice that ford = 2 the necessary property wasW±0 ≶ 0,
W±s ≶ 0 associated toξ±0 , ξ

±
s . In order to show the same property we only rewriteξ±0 ,W±0 :

ξ±0 = [j0 ±
√
1]/26 ≷ 0, 6 = 63

i=1n0i > 0 1 = j2
0 + 4n036

26ρ0W
±
0 = (n01 + n02)(j0 ∓

√
1)∓ 2n03(2

√
1± j0) ≶ 0→ W±s ≶ 0.

(A.8)

Let us notice that for isotropic (0) staten0i = n0, from (A.6), (A.7) we getξ±0 = 1/
√
d and

recall, from lemma 3(i),|ξ | ≷ 1/
√
d if ρ1 ≷ 0.

Theorem 3. For d = 2, 3 no rarefactive shock can exist.

For the proof we must show thatρ at the upstream is lower than at the downstream (or
compressive shock). We apply (A.3) and lemma 4:γρ1ξ > 0, ξV0 < 0 to four cases.

(1) ξ > 0 giving V0 < 0, a negative direction of the shock with upstream (downstream) at
±∞.

(1.1) ρ1 > 0 givingγ > 0 andρ0(ρs) at±∞ or ρ0 (upstream)< ρs (downstream).

(1.2) ρ1 < 0→ γ < 0 andρs(ρ0), upstream (downstream) at±∞or ρs (upstream)< r0
(downstream).

(2) ξ < 0 givingV0 > 0, a positive direction of the shock, upstream (downstream) at∓∞.

(2.1) ρ1 > 0 → γ < 0 andρs(ρ0) at ±∞ or downstream (upstream) and finallyρ0

(upstream)< ρs downstream.

(2.2) ρ1 < 0→ γ > 0 andρs(ρ0), upstream (downstream) at∓∞ or ρs (upstream)< ρ0

(downstream).
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Appendix A.2. Nonconservative Broadwell model with Riccati solutions (5.2)

We define:

n̄i = ni/ρ1 η̄ = η/α γ̄ = γ /ρ1α n̄ijkl = n̄i n̄j − n̄kn̄l σ̄ = σ/(d − 1)α
n̄0,ijkl = ρ1n̄ijkl + n0i n̄j + n0j n̄i − n0kn̄l − n0l n̄k CLax = 1− ξ2 − 2(d − 1)n̄3.

(A.9)

From the mass conservation (2.4b) we getSρ = S+
1,2 + 2(d − 1)S3 = 0 and one relation

j1 = ρ1ξ . With ρ1 = n+
1,2 + 2(d − 1)n3 we deducēni as functions of̄n3:

1= n̄+
1,2 + 2(d − 1)n̄3 ξ = n̄−1,2→ 2n̄i = 1− (−1)iξ − 2(d − 1)n̄3 i = 1, 2.

(A.10)

For both the momentum relation without elastic collisions (2.4c)–(2.5c) and theN3 evolution
equation with elastic collisions (2.4a)–(2.5a) we get three relations: two for the (0), (s)
asymptotic states and one for the scalar Riccati solutions:

SJ = S−12 = α(ρ0 + η̄)(j0 − κJ ρ0) and ρ0, j0→ ρs, js

Aρ := ρs + η̄ Bρ := Aρ + ρ0 ξAρ = κJBρ − j0 γ̄ = (κJ − ξ)/CLax
(A.11)

S3 = σ̄ (n2
03− n01n02) + α(n03− κ3ρ0)(ρ0 + η̄) and n0i , ρ0→ nsi, ρs

Bρκ3 = Aρn̄3 + n03− σ̄ n̄0,1233 γ̄ = (n̄3− κ3− σ̄ n̄1233)/ξ n̄3.
(A.12)

Starting withρ1, ξ, n3, κJ , α, η, n01, n02 we deduce successively all other parameters.

Appendix B. Shock waves for the hexagonal model (4.1)

Appendix B.1.

Compatible Riccati solutions for the fourNi evolution equations

∂tNi + ei∂xNi = σi(N2N3−N1N4) + (αρ + β)(ρκi −Ni) + Si i = 1, 2, 3, 4 (B.1)

ei = 1,± 1
2,−1, σi/σ = 2, 1, 1, 2. As in (A.9) we definēni, . . . andn±0,ij = n0i ± n0j . . . .:

σ̄i = σi/α CLax = 1− ξ2 − 3n̄+
2,3/2 (ρ1, j1)→ 1= n̄+

1,4 + 2n̄+
2,3 ξ = n̄−1,4 + n̄−2,3. (B.2)

We retain three evolution equations without elastic collisions forρ(z), J (z),N−23(z) andN2(z)

with elastic collisions. Forρ the relationj1 = ξρ1 is written at the end of (B.2), for each of the
three other we have three relations, two for the asymptotic states and oneγ̄ for the compatible
Riccati solutions:

γ̄ = (κJ − ξ)/CLax = (κ−2,3− n̄−2,3)/(n̄+
2,3− ξ n̄−2,3) = [σ̄ n̄1423+ κ2 − n̄2]/n̄2(

1
2 − ξ) (B.3)

BρκJ = Aρξ + j0 Bρκ
−
2,3 = Aρn̄−2,3 + n−0,23 Bρκ2 = Aρn̄2 + n02− σ̄ n̄0,1423 (B.4)

SJ = S+
12− S+

34 = α(ρ0 + η̄)(j0 − ρ0κJ ) S−23 = α(n−0,23− ρ0κ
−
23)

S2 = σ(n02n03− n01n04) + α(ρ0 + η̄)(n02− ρ0κ2).
(B.5)
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Appendix B.2.

Linearizing around (0) we get a 4×4Xρ,Xj ,X23, X2 linear system with four linear differential
operators and write�2 as follows:

i=4∑
i=1

�i =

∣∣∣∣∣∣∣
∂t ∂x 0 0

∂x − Aρ ∂t +AJ 3/2∂x −3∂x
−A2 0 ∂t − ∂x/2 +AJ ∂x
−A3 −A4 −A5 ∂t + ∂x/2 +A1

∣∣∣∣∣∣∣ = 0

A1 = AJ + σ(2n+
0,14 + n+

0,23) A2 = α(2ρ0κ2,3− n−0,23) + ηκ2,3

A3 = α(2ρ0κ2 − n02) + ηκ2 + σn+
0,14/2 A4 = σn−0,41/2

A5 = σ(n04 + 2n02 + 3n01)/2
�2 := ∂2

t2(AJ (AJ + 2A1) + ∂2
xt [Aρ(A1 +AJ ) +AJ (A5− 3A4 + (AJ − A1)/2)]

+∂2
x2[AJ (Aρ/2− A1 + 3A3) +A5(Aρ + 3A2)− A1(Aρ/2 + 3A2/2)].

(B.6)

Appendix C. Shock waves for the square 8vi model (7.1)

Appendix C.1.

Compatible Riccati solutions with fiveNi, i = 1, . . . ,5 evolution equations:

(∂t + ei∂x)Ni = σ1,iC1 + σ2,iC2 + (αρ + β)(ρκi −Ni) + Si (C.1)

withC1, C2 in (7.1),ei = 1, 1, 0,−1,−1,σ1,i/σ1 = −1, 0, 1, 0,−1,σ2,i/σ2 = 2,−1, 0, 1, 2.
We define, as in (A.9),̄n±ij , σ̄i = σi/α, γ̄ , n̄ijkl, n±0,ij = n0i ± n0j . . .:

CLax = 1− ξ2 − 2n̄3 (ρ1, j1)→ 1= n̄+
1,5 + 2(n̄+

2,3 + n̄3) ξ = n̄−1,5 + 2n̄−2,4. (C.2)

For theJ,N+
2,4, N2, N3 equations we write the four compatibleγ̄ and (2.5a)–(2.5c) relations:

γ̄ = (κJ − ξ)/CLax = (κ+
2,4 − n̄+

2,4)/(n̄
−
2,4 − ξ n̄+

2,4)

= (n̄3− κ3− σ̄1n̄1533)/ξ n̄3 = (n̄2 − κ2 − σ̄2n̄1425)/n̄2(ξ − 1) (C.3)

ξAρ = κJBρ − j0 n̄+
2,4Aρ = κ+

2,4Bρ − n+
0,24

n̄3Aρ = κ3Bρ − n03 + σ̄1n̄0,1533 n̄2Aρ = κ2Bρ − n02 + σ̄2n̄0.1425.
(C.4)

Appendix C.2.

We linearize around (0) with a 5× 5Xρ,Xj ,X2,4, X2, X3 and five�i :

A2 = α(2ρ0κ24− n+
0,24) + ηκ24 Ã2 = AJ + σ2(n

+
0,15 + 2n+

0,24)

A3 = α(2ρ0κ2 − n02) + ηκ2 + σ2n
−
0,42/2 Ã3 = AJ + σ1(n

+
0,15 + 2n03)

A4 = σ2n
+
0,24/2

A5 = σ2(n01 + 2n02) A6 = σ2n
−
0,24 A7 = α(2ρ0κ3− n03) + ηκ3 + σ1n

+
0,15/2

A8 = σ1n
−
0,51/2= −A10/4 A9 = −2σ1n01

i=5∑
i=1

�i =

∣∣∣∣∣∣∣∣∣
∂t ∂x 0 0 0

∂x − Aρ ∂t +AJ 0 0 −2∂x
−A2 0 ∂t − ∂x +AJ 2∂x 0
−A3 −A4 −A5 ∂t + ∂x + Ã2 0
−A7 −A8 −A9 −A10 ∂t + Ã3

∣∣∣∣∣∣∣∣∣ = 0.

(C.5)
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Appendix D. Shock waves for the square 9vi model (7.2), (7.3)

Appendix D.1.

Compatible Riccati solutions forJ,N240, N0, N
+
2,3, N

+
3,4 with n̄240= n̄+

2,4 − n̄0/2:

CLax = 1− ξ2 − 2n̄3− n̄0 (ρ1, j1)→ 1= n̄+
1,5 + 2(n̄+

2,4 + n̄3) + n̄0

ξ = n̄−1,5 + 2n̄−2,4.
(D.1)

We write the five compatiblēγCLax = κJ − ξ and the (2.5a)–(2.5c) relations withoutSi, SJ :

γ̄ = (κ240− n̄240)/(n̄
−
24− ξ n̄240) = (n̄0 − κ0 − 2σ̄0(n̄1320 + n̄5340)/n̄0ξ

= (n̄+
3,4 − κ+

3,4 − σ̄1n̄1533+ σ̄0n̄1320 + σ̄2n̄1425/(ξ n̄
+
3,4 + n̄4)

= (n̄+
2,3− κ+

2,3− σ̄2n̄1425− σ̄1n̄1533+ σ̄0n̄5340/(n̄
+
2,3ξ − n̄2)

κ240= κ+
2,4 − κ0/2

(D.2)

n̄240Aρ = κ240Bρ − n+
0,24 + n00/2 n̄0Aρ = κ0Bρ − n00 + 2σ̄0(n̄0,1320 + n̄0,5340)

n̄+
3,4Aρ = κ+

3,4Bρ − n+
0,34 + σ̄1n̄0,1533+ σ̄2n̄0,1425− σ̄0n̄0,1320 ξAρ = κJBρ − j0

n̄+
2,3Aρ = κ+

2,3Bρ − n+
0,23− σ̄2n̄0,1425− σ̄1n̄0,1533− σ̄0n̄0,5340 σ̄i = σi/α.

(D.3)
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