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Abstract. Extended discrete kinetic theory (that which we call nonconservative) including
sources, sinks, the creation and annihilation of test particles and inelastic scattering etc added
to the elastic collisions, was first introduced by Boffi and Spiga. The mass conservation law (or
momentum, energy) becomes, by adding polynomials of the mass (or densities), nonconservative.
There exist linear and quadratic nonconservative models for which travelling waves were recently
found. In order to test the travelling waves as shock waves (Whitham—Lax criteria and shock
inequalities) we consider an intermediate class of models whéhe nonconservative models we
restrict the parameters such that the mass conservation law is retaiftedind rarefactive (with

mass and pressure decreasing) sho€kstly, for a large class of model$rom the conservative

mass relation and the modified momentum (including nonconservative terms) we provalghat
rarefactive shocks can satisfy the shock inequaliti®scondly, for particular modelghe two-

and three-dimensional Broadwell models, the hexagonah®del and 8;, 9v; squares models
(without and with rest particlejve construct explicit travelling solutionshich result from the
compatibility between different scalar Riccati equations. We find a condition such that the Lax
criterion and the shock inequalities are satisfied, while we numerically check the Whitham criterion.
We also find that a criterion for overshoots of the internal energy, established previously for
conservative models, still works for the nonconservative ones.

1. Introduction

Extended discrete kinetic theory (that which we call nonconservative), introduced by Boffi and
Spiga, has been extensively studied [1]. They add to elastic collisions a background medium,
external sources and sinks, effects of absorption and generation due to inelastic scattering etc.
A great difference, with conservative discrete velocity models (DVMs), is thatthgervation
laws are modifiedby including nonconservative terms: for instance, by adding polynomials
functions of the densities, either linear [2] or quadratic [3]. Recently, exact travelling wave
solutions and (1 + 1)-dimensional solutions were found [4].

For the densitied; (z) travelling waves with the variable= x — &r (wave speed, space
x, time ¢) of nonconservative DVMs with binary collisions and quadratic nonconservative
terms ([4] also deals with linear terms), the exact solutions were obtained from compatible
different scalar Riccati equations number equal to the independent densities. For conservative
or nonconservative (except mass) DVMs this number is smaller because we substract the
number of linear conservation laws (invariants). A difficulty for the conservative DVMs is that
this number can be larger than the number of physical invariants (mass, momentum and energy).
The nonphysical invariants are called ‘spurious invariants’. In contrast, for nonconservative
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DVMs with only the mass conservation invariant, we have no spurious invariant. The travelling
densitiesV; (z) waves and the solutions of scalar Riccati equations of the type (see section 4):

Ni(z) = no; + (ng —ng;)/[1+€7] ¥, noi, ng constants (1.1)

remain almost constant f¢x| large (see figures 2—4), but their two asymptotic states are either
ng Orng atz = too . Similarly, for the macroscopic maggz) and the momentund (z)
along thex-axis, the asymptotic stateszat +oo are eitherpg, jo or ps, j;. For shock waves
we must first consider the direction of the shock (from the upstream to the downstream states)
and determine the asymptotic states which are either the upstream (satisfying a supersonic
inequality) or the downstream state (satisfying a subsonic inequality). If the direction of the
shock is positive, then the upstream (downstream) statezis-at oo (z = +00). In contrast,
for a negative direction the upstream (downstream) states are ato (z = —o0).

In section 2, see figure 1, we define, in the= 2 plane with two coordinates:, y), a
class of models with velocitie§ = (x = ¢;, y = y;) (in addition, only the Broadwel = 3
dimensional is considered), and briefly recall previous results and the different formalisms
used in the paper. The planar models are such that forvaeyists its oppositey;, with
v; +v; = (0,0) or for the projections;, e; along thex-axis we haver; +e; = 0. In
particular, for each; = (¢;, 0) there isv; = (—e;, 0). Furthermore, for every; there isvy
such that the sur; + v, = 2(e;, 0) is along thex-axis. As an illustration some models are
presented in figure 1 where, for brevity, we substitute the densgtige the velocities. The
N; densities depend ofx, y, ¢) but for travelling waves along the-axis, they coordinate
disappears and they are orfly= x — &) dependent. We only write the evolution equations
for the (x, t)-dependent solutions and write for the conservative, the nonconservative and
the nonconservative (except mass) models the evolution equations for both the microscopic
N;(z) and macroscopip(z), J(z) quantities. We define the nonconservative terms and the
restrictions when we re-introduce the mass conservation. Later we define the asymptotic states,
the Lax—Whitham criteria [5] and the shock inequalities. For conservative DVMs, results have
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been obtained in the general case [6, 7] and for other particular models with specific collisions
[8]. As quoted by Whitham [5]:

In some wave propagation, different levels of approximation to the govering equations

lead to different types of wave motion. A related effect is that the propagation speeds

defined by the highest derivatives may be quite different from the speeds at which the
main disturbance travels. Then the questions arise to know which sets of waves are
dominant.

For shock waves the main disturbance is the sound wave (or characteristic) which corresponds
to the lowest-order derivative and the problem is to check whether the waves associated to
higher orders are damped wher> oco. Broadwell was the first to introduce this Whitham
criterion for his shock wave. For conservative DVMs general [6] and particular [8] results
have been obtained for this criterion, exploiting the fact that the asymptotic states correspond
to vanishing elastic collision terms. For nonconservative, except mass models, this is no more
true for the asymptotic states and almost all results presented are numerical. The Lax criterion
was firstintroduced in a different context for hyperbolic systems of conservation laws and later
[6-8] for conservative DVMs. Naming.., the sound waves (or characteristics) associated

to the asymptotic states at= +oo and& the shock speed, for the Lax criterion we must
satisfyé., < & < £ . As we shall see here analytically (lemma 1) and numerically (tables
associated with figures 2—4), it results from both a common direction for the shock and sound
waves and the supersonic and subsonic inequalities.

In section 3 for the class of models defined in section 2 we obtain general results for the
nonconservative (except mass) models. We determine analytically the sound waves associated
to the asymptotic states and prove that only rarefactive shock can exist. This is in contrast with
conservative models for which both compressive and rarefactive shocks have been found. For
instance, for the conservative Broadwell models we prove (appendix Al) that only compressive
shocks exist. This illustrates the great difference between conservative and nonconservative
(except mass) shock solutions.

In section 4 we recall the determination of travelling waves coming from the compatibility
between different scalar Riccati equations. In sections 5—7 we study the Broadwell, hexagonal
and square models.

Throughout the following, for ang;, z; quantities we define
Z;‘;:Z,:f:zl Z?;:Z,‘:ij Zi,j,...,p=Zi+Zj+"’Zp

1.2
p=2itzjt---27p. (1.2)

,,,,,,

2. Models, evolution equations, Lax—Whitham criteria, shock inequalities

2.1. Models with opposite discrete velocities in they) plane

In figure 1 we present some plandr= 2 models with two coordinates for the velocities
which are symmetric with respect to both tlve and y-axes: the 4; Broadwell with
velocity coordinateg+1, 0), (0, +1), the &; hexagonal model with velocitie&t1, 0),
(£3. £/3/2), the &; square model without a rest particie-1, +1), (£1,0), (0, £1)
and adding a rest partick®, 0) the Q;, and finally the 4v; nestedp-square model. We
will consider only oned = 3 Broadwell model with three coordinates for the velocities:
(£1,0,0), (0,£1,0), (0,0, £1).

The one spatial dimensional ¢ solutions, depending only on the spatial coordingte
have independent densitid§(x, ¢),i = 1,2,.... For the planar models those associated
to velocities(x;, y;) with the samex; = ¢; value but opposite; values are equal. Th¥;
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associated to velocities; = ¢;, y; = 0) along thex-axis have multiplicitye; = 1 and for
any N; exists anotheV; with a velocitye; = —e; along thex-axis. In contrast those with
velocities ; = e;, £y; # 0) are equal with multiplicityy; = 2. Finally, for any velocityy;
with anx-axis projectiore; # 0 there exists another; such that; +v; = (0,0),e; +¢; =0
and anotheb; with v; + t; = 2(e;, 0). Only for thed = 3 Broadwell model, do the densities
associated tg+1, 0, 0) haveo; = 1, while the four other densities with projections on the
x-axisx; = 0 correspond to one density with = 4.

For the one-dimensional solutions (x, r) we define the macroscopic total massthe
momentum/ along thex-axis and the elastic binary collisions Gal

p=> a;N; J =Y aeN; Coly, = > afj(NN, — N;Ny) (2.1)
jik,l

whereaf’; is the transition probability of the collisionif, v;) — (v, v;). For the square

Broadwell model we have = Nf,z + 2N3, J = N, with multiplicity 1 for Ny, N>

ande; = +1 whileeg = 0, a3 = 2 for N3 = N4. For the hexagonal model we have

p = N, +2N35 J = Ny, + N, and seeV; = N, N3 = Ns With o; = 2 ande; = +3

whilee; = +1 andw; = 1 for N1, N4. For the squares = No15+2N234, J = Ni5+2N,,,
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we seeN, = Ng, N3 = N7, N4 = Ngs with o; = 2 ande; = 41, 0. Of course for the
rest particleNy we haveag = 1 andeg = 0. For theqth nested square with densities
N; = Nay-1+j, j = 1,2, 3,4 we have folg odde; = 1 ande; = £2~Y/2 oro; = 2 and
e; = 0. Forg even we always hawe, = 2 ande; = £27/~1, We can also construct other
nested-polygonial models like the nested hexagons with similar properties. Fér+h8&
Broadwell model with opposite velocities1 along the third;-axis we see that for the-
dependent solution the only change is My with ¢z = 4 andp = Niz +4N3. Otherd = 3
models exist with a similar structure and = 2(d — 1) but it can be eight. For brevity they
are not considered.

Consequently, for all these modefsie; = > e;o; = 0.

2.2. Evolution equations for the conservative, nonconservative and nonconservative (except
mass) models
First, for theconservativenodels we write theV; (z = x — &¢) evolution equations:

L; = (0; +€;0,)N; = 0,(—£ +¢;)N; = R; = Coly;,. (2.29)
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We obtain, mulplying by;, «;e; and summing, both the andJ equations:

L,=8p+d,J=0,(—£p+J)=R,=0 > a;Coly, =0 (2.%)
Ly=8J+dp; =0~ +p)=R; =0 ) weColy =0 py=7 efo;N;.
(2.20)

Secondly, for thenonconservativanodels we write theV; evolution equations and still,
multiplying by e;, o;e; and summing, the mass and momentum alongxtiais relations
which are not conservative:
Li = (3, +€;0)N; = 0.(=& +¢;)N; = Ri = Coly, +«i(ap® +np) — N;(Bp +€) +S;
(2.3)
L,=0p+0J =0.(~kp+))=R,=(@—B)p*+(n—e)p+S,  S,:=) a5,
(2.30)
Ly =0J+0:ps = 0.(—&J +p;) = R; = k;[ap® +npl + S; — J(Bp +¢€)

Kj = ZE,‘OQK,‘ S_] = ZeiaiSi. (23:)
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Coly, are the only terms presentin the conservative models. The others are the nonconservative
terms [2,3]:8 > 0,¢ > 0 (¢ > 0,n > 0) for the destruction (creation) of test particles as a
result ofinelastic collisions which can be quadratic or linear in the densitiElsex; € (0, 1)
with > a;x; = 1 represent the fractions of secondary particles generated with velagities
along thex-axis. As usuals; > 0 (<0) are constants associated toglxeernal sources (sinks)
Thirdly, we consider nonconservative (except mass) DVMs. In order to establish some
link between conservative and nonconservative DVMs, we keep the mass conservation relation
L, = R,withR, =0o0ra = 8, n = ¢, S, = 0 and obtain an intermediate class of
models. The amount of test particles created or annihilated as well as the sum of sources
and sinks is globally zero. Of course the momentum and energy relations are not conserved
relations, and the fraction of secondary partiole$s not modified. As a consequence we
will try to extend important properties of the conservative models for shock waves, namely to
check the Whitham—Lax criteria and the shock inequalities. Wijtli, still defined in (2.1),
Coly, satisfying (2.1)—(2c) andp,, ks, S; in (2.2c)—(2.3c) we rewrite the equations for the
densities with elastic collisions and nonconservative terms, the mass conservation (without
nonconservative terms) and the momentum relation (with nonconservative terms), but without
elastic collisions.

densities: (0 +e;0)N; = 0,(—& +¢;)N; = COlNi + (ap +n)(kip — N;y) +S; (24&)
mass: d,p+09,J =9, (—ép+J)=0 S, =0 B=«a €=1 (2.4b)
momentum: 9,J +9,0; = 9,(—&J + py) = (@p +n)(kyjp — J) + S;. (2.4c)

2.3. Asymptotic states, Lax—Whitham criteria, shock inequalities

In the following we consider DVMs satisfying only the mass conservatictuj2(2.4¢). For
travelling wavesvV; (z = x — &t) with wave speed we assume, from the vanishing of the rhs
in (2.4a), the existence of two asymptotic states (0) af)dvhen|z| — oo:

o (O) withnoi, po = > inoi, jo = > aieinoi;
o (s) With ny; = no; +n;, ps = Y aing = po+ p1, js = )_ eiqing = jo+ j1.

Densities: — S; = Col,, + (apo + n)(kipo — noi) = Col,, + (aps +n)(kips — ny). (2.53)
The mass conservatidR(—&p + J) = 0 can be integrated leading to the jump relation:
mass: def. Vo = jo/po — & Vs = Js/ps — & — Vopo = V;ps

VoVs >0 j1=§p1.
The vanishing of the rhs of the momentum4@ where we introduce (8b) remains:

(2.50)

momentum: — S§; = (aps +n)(kyps — js) = (epo + ) (k700 — jo)
— (aps + s —E) =a(jo—rp0)  and  po < py, jo < ji. (2.5)
The last (25¢) relation, mixingé, po, ps and the nonconservative terms, is very important.

Whitham criterion. Linearizing around an asymptotic state we get a sum of linear differential
operators of a different order, the lower giving the characteristics (sound waves). For two
successive operators Whitham has given a criterion such that the lower is dominant when
t — oo:

ptl 14
|:H(8t +cjox) +A1_[(8, +aj3x):|fb(x, t)=0 A>0 c1>a1>co- - >ap, > Cpet.
j=1 j=1

(2.6)
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In order to understand the difficulty of a complete proof of the different Whitham criteria,

let us consider our nonconservative (except mass) models where the lowest operator is of the
first order with, for instance, characteristic spégdt the (0) asymptotic state. The next order
operator is second order with wave speeds c,. We must prove that; > & > ¢,. The next

one is of third order with speeds > d> > d3 and we must check the interlacing properties

d1 > ¢1 > dy > ¢ > dz and so on. In general we have only verified this numerically. In
contrast, for conservative DVMs the asymptotic states correspond to vanishing elastic collision
terms and both general [6, 7] (binary collisions), and particular [8] results (multiple collisions)
have been obtained.

Lax criterion. Let & be the shock speed, arfd, & the speeds of the sound waves or
characteristics associated to the (@), gtates and compare these with the shock sggeed

If we havegy < & < & then the (0) state must be on the right or on the left (conversely for
the (s) state). For our travelling waves right and left means asymptotic statescatSo we
define ast., the characteristics associated to the statessoat (which are eithegy, or &;).

For the Lax criterion [5—8] they must satisf§., < & < &_ (with the same index if there
exist more than ong, &;).

Shock inequalities. To the shock waved/, V; satisfying the jump condition (2.5) with
VoV, > 0 we associate the wavégy, = jo/00 — &0, Wy = Jjs/ps — & at the (0), §)
states and they must satisfy the shock inequalities. The direction of the shock (from the
upstream to the downstream state) is given by the common sidh, df,. If it is positive
then the upstream is atoo and the downstream abs (the converse if it is negative). If the
(0) state is in an upstream state we must have the supersonic inequaglity |Wq| while

if it is downstream, the subsonic inequalityy| < |Wo| (similarly for the ¢) state). We
redefine these shock inequalities from the unknown statesatLet o, ji, £ be the mass,
momentum and sound-wave speegd at +oo and defind/. = j./pL—&, Wy = ji/pr—&x
(Vx, W4 can be eitheWy, Wy or Vy, Wy). For an upstream state #&bo we must satisfy the
supersonic inequalityvy.| > |W.| and for a downstream state-ato the subsonic inequality
Vil < [Wxl.

Assumptions which are usual.From the jump relatioVypo = V,p,; With pg > 0, o, > 0

the direction of the shock is given by the common sigrVgfV;. Let us assumé&, > 0, a
positive direction of the shock and the (0) state at —oco. The (0) state is the upstream state
and we must verify a supersonic inequality.W§ < 0, the shock wave and the sound-wave
perturbation propagate in opposite directions and, as stated in the literature [6], physically we
cannot say that the shock is supersonic. Similarly at the downstregnsif0, W, < 0. So

we assume that the sound wavkég W, also have the shock-wave direction, the subsonic and
supersonic inequalities for both the shock and sound waves.

Lemma 1. If the shock inequalities are satisfied then the Lax criterion is also satisfied.

For the proofs we have two casdg > 0, < 0 with a positive and negative direction of
the shock.

(1) Vo > 0, then the upstream is atoo with a supersonic inequality_. = j_/p_ — & >
W_ =j /p_—& or& < &, and the downstream abd with a subsonic inequality
V. < W, oré&, < £ and the Lax criterion is satisfied < & < &_.
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(2) Vo < 0, then the upstream is abgwith a supersonic inequality Ve = —j+/p+ + & >
—Wi = —ji/p+ + & Orés < £, and the downstream atoo with a subsonic inequality
—W_ > V_oré < &_ with the Lax criterion.

So¢ is necessarily in the intervao, &) but we do not know whethép = &.

3. General results without explicit solutions

We will obtain general results for any DVMs (without the construction of explicit solutions)
satisfyingonly one conservative relatigthe mass conservative relation) and a nonconservative
momentum relation of the type @) (as for the nonconservative, except mass, models). First,
linearizing around the (0) state we will get for all nonconservative (except mass) DVMs, with
equations written in (Za)—(2.4¢) (except the two-velocity models [4] not considered here),
the same expression for the sound wasge;) associated to (0)s}]:

[poa +n]lx; — &o] = e[ jo — kPl and &0, pos Jo —> &, Pss Js- (3.1)
Second, we will consider only the mass conservation, with the jump relatiéh)(Zhe
existence of two asymptotic states (@), gatisfying the vanishing relations of the momentum
modified relations (Bc), Vp giving the direction of the shock and the shock inequaliti#’s.
will prove that only rarefactive shocks can exist

3.1. Linearization around the (0) state

With the (24b), (2.4a), (2.4¢c) linear and nonlinear system we assume- pg[1 + X ,(2)],

J >~ jo[l+ X;(z)] and N; = no[1 + X;(z)] with z = x — ¢¢, respectively. For a model

with p independent densities we linearize with the systerl ofX ; and(p — 2) X; and take

the determinant. From (@b) the first row, for the mass conservation, contains d@nlgnd

d,. Consequently, the lowest order operator is of first order and the assogiptdghomial

is linear. From (2c) the second row, for the momentum, has constant terms given from the
rhs only forX,, X;. The remaining terms contain derivativés o;. For the determination

of the characteristics = & it is sufficient to consider constant terms in the rows different
from the first one, corresponding to.42)—(2.4¢). In particular, in the second row for the
momentum, except for the first and the second column, all other terms are zero. This is the
main reason why we obtain the sound waves only from the mass and momentum relations

where forz = zg = x — &t we haved, = —£yd,,, 0y = 0,,:
0; 0y 0O 0... O
-A, A, 0 0... 0 Asz ... As,
A1 Az Asz - A3[, =0=(0,A, + 3xAp) . =0 (32)
: .- L Aps ... Ay
Ay Ap Apz ... Ay
Aj=app+tn>0 Ap = 2apo+nk; —ajo—> o =A,/A, (3.3)

and we recover the (3.1) results for the sound wgyego, jo andé;, oy, Js.

3.2. Rarefactive shocks for the nonconservative (except mass) models

We recallVp, V; written in (25b) and notice that in (3.1) and in the last%2) relation the rhs
are the same. This means that direct relations exist between the shock-wavé apéetie
sound-wave speeds, &,:

[aps +nllks — &] = a(jo — kypo) = apo[ Vo — (k; — &)] = [apo + ][k — &ol (3.49)
[0l,00 + n][KJ - E] = a(jx —Kjps) = apx[vs — (ky — g)] = [Ol,OS + n][KJ - g?] (34b)
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For the linear nonconservative models= 0, n # 0, from (34a), (3.4b) we getx; = & =
& = &, Vo = Wp, V; = W, without possible shock inequalities. In the following we assume

a #0.
Lemma 1(i). From (3.4a), (3.4b) we getVo(k; —&) > 0,V (k;—&) > Oandverify¢ € (&, &).

For the proof of the first result we get from the positivity @fn, co, s and (34a):
(aps + ) /apg) = Vo/(k; — &) — 1 > 0 and similarly from (34b). For the second result we
subtract the first and last terms in both4@), (3.4b) with positiveq, 1, po, ps:

api(ky — &) = (apo+n)(E — o) = (aps + M) (& —§). (3.40)
Theorem 1. The shocks are rarefactive for nonconservative (except mass) DVMs.

For the proofs we must show thatis larger upstream than downstream. We have four
different casesps = ps — po =2 0 andk; 2 §.

(1) k;, > & giving Vo > 0 from lemma 1(i) and a positive direction with the upstream
(downstream) states at= Foo.
(1.2) p1 > 0. From (34a), (3.4b) we deduce; — & < ky—& <Ky —&p, &0 < & < & —
Vo— Wo =& — & < 0orVy < Wy with a subsonic (0) downstream state inequality.
The upstream state is the) (state withp; > pg andp decreases from the upstream
to the downstream states.
(1.2) p1 < 0. We deducé, < & < &, Vo > Wy with a supersonic (0) state inequality and
amassog > p, at the downstreansy] state.
(2) k; < & giving Vy < 0, a negative direction of the shock with the upstream (downstream)
states at = +oo0.
(2.2) p1 > 0 giving p;, > po, & < & < &, Wy < Vy < 0 and a subsonic downstream (0)
state withpg less tharp, at the upstream.
(22)p1 < Owith& < & < &, Vo < Wy < 0 and a supersonic (0) upstream state
Vol > |Wp| inequality withpg larger thanp, downstream.

In order to verify that these possible rarefactive shocks really exist, with decreasing pressure,
we must construct explicit solutions and, for instance, verify that the positivity for the densities
no > 0,n,; > 0 are satisfied. This is the goal of the following sections.

4. Travelling waves as compatible scalar Riccati solutions

In [4, 5] we gave the method in order to obtain, from a quasi-linear sy&t¢m] = R;[N;],
exact travelling wave®/; (z = x — &t) solutions which result from the compatibility between
p different scalar Riccati solutions. We briefly recall the method. IThare linear differential
x,t operators, for instance as in42) L; = 9, +¢;0, = (—§ +¢;)d,, but they can also be a
sum of such terms. Thi;[N;] = R;(N1, Na, ..., N,,) are sums of quadratic nonlinear terms
in N1, N»...asin (24a)—(2.4c) but they can also contain linear terms and constants.

We assume that alN;(z) are linear functions of the sam&(z) function with two
asymptotic states (0)tig; and §): ny; = ng; +n; corresponding tR;[ng;] = Ri[n,i] = 0:

Ni(z) = noi +niN(z = x — &t) p(z) = po+ p1N(z) J(@)=jot+ aN(2). (4.1)

We substitute (4.1) intaR;[N;] and from R;[ng;] = Ri[no; + n;] = 0 we deduce for
Ri[no; +n;] — R;[no;] = 0 a sum of terms quadrati®; and linear—B; in [n;] = ny,ny, ....
We can rewrite the rhs aB; = B;N(N — 1). On the other hand, the lhs can be written
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L; = C;dN/dz so that we are reduced to a £8dN/dz = B; N(N — 1) of scalar Riccati

equations which are compatible onlyjf:= B;/C; give the same constantforak=1, ..., p,

dN/dz = y;N(z)(N(z) — 1) conditions:y = y1 =y =--- - N(z) = [1+ &L
(4.2)

and N; — ng;, ny; When|z| — oo. Applying this method to the travelling @i)—(2.4c)
DVMs, we add to the (Ba)—(2.5¢) relations for the densities and the momentum relations:

Yi(=& +ei)n; = Col,, + ap1(kip1 — n;) Yy=v=V2... (4.3
def: p; = Zeiza,-ni/pl Crax = py — &7 YClrax = ap1liy —§). (4.30)
We prove that thé.ax criterion and the shock inequalities are satisfied only;if, > O.

Theorem 2. For nonexplicit scalar Riccati solutions the Lax Criterion is satisfied (not) if
Crax > 0(< 0) and, from @.3b), yp1(k; — &) > 0if Cr, > 0.

For the proof we notice from (4.2)—-@b) thaty = 0 — (0) state at = +oo and ¢) at
z = Foo, While y Cp,, written in (4.3b) is equal to the terms written in &):

Y Crax = (@po + 1) (§ — o) = (aps +n)(&5 = §). (4.4)

We get two casesy < £ < &, associated ty C,,, = 0. Consequently witl€',,, > 0,y > 0
thenpg = p+oo aNd& < € < & While if y < 0 thenp; = pioo @NdE; < & < &. In contrast
if Crax <Owefindé_o < & < &40 in both cases.

In sections 5—7 we explicitly construct compatible travelling solutfonghe Broadwell,
6v;, 8v;, Qu; nonconservative DVMs and give examples; {, > 0) with Lax and shock
inequalities satisfied. For the Whitham criterion, the sound waves being given with a linear
polynomial,interlacing properties with higher polynomials are deduced numerically.

5. Shock waves for Broadweld = 2, 4v;, d = 3, 6v; models

With three independent densities (cf figurel), N,, N3 andx-coordinates; = +1,0 or
equivalentlyp, J, N3, we have three evolution equations. We write the mass and momentum
conservations (2b), (2.4¢) without elastic collisions and finallys (multiplicity 2(d — 1))

with collisions. We recall for the mass the jump relation and write the other two as:

p=N,+2(d—1)N;3 J=Np, o7 =p1—2(d—1)N; Kj = Kpp
L,=8p+3,J=0 j1=E&p1 S,=S8,+2(d —1)S3=0

B (5.1)
Ljy=0;J+0,05=0,(=&J+p;) = (ap+n)(ok; —J)+S, S; =35
Ly = 8N3=—£3,N3= Ry = 0 (N1N, — N§)/(d — 1) + (ap + n)(k3p — N3) + S3
N; = ng; +n;N(2) p = po+piN(z) J = jo+ iN(2). (5.2)
5.1. Conservative Broadwell modeV;(z = x — &r),i = 1,2,3andS; =a=n=0
(1—&)N1. = —(L+&)N,. = (d — DEN3 . = 0 (N5 — N1N2). (5.3)

The interest (appendix Al), for this DVM which has been the most extensively studied, is an
analytical proof (withVy giving the shock direction and shock inequalities satisfied) that the
only possible shocks are compressive, contrary to the nonconservative case where they are
only rarefactive. First, we show (lemma 2) that we know the statessatfrom the sign of

&p1 and (lemma 4) that the sign &% is known fromé Vy < 0. Second, we show (lemma 3),
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for thed = 2 model, that the shock speed satisfigs< 1 (and for the isotropic (0) state for

d = 3). Third (theorem 3), we show that the shocks are compressive. The main difference
between the two theories, for the same model, is that the conservative sound waves are roots
of a quadratic polynomial while the nonconservative (except mass) sound waves are roots of
a linear polynomial. For the conservative Broadwell model, with two conservation relations,
the last evolution equation is a scalar Riccati equation which is completely integrable [9]. This
means that the presented results are general and not restricted to a particular class of solutions.

5.2. Nonconservative Broadwell modé}: # 0, o # 0

Linearizing around (0) we get a 8 3 X,, X;, X3 linear system with three operators:
Q3 = 9,(35 — 9%), (roots%1, 0), 2, Q1 = Ay Bo(d; +&0dy) — & written in (3.1)—(3.3):

af 8)( 0
Q3+ Qo+ Q1 = ax—Ap 0,+A; —2(d-1o,|=0

B, B, d; + By
By = Aj +0(nop+noz2+2no3/(d —1) >0 B;2(d—-1) =o0jo>0 (5.4)
B, = —(201p0 + n)k3 + angz — o (no1 + no2) /2

Qo= 83(Bo+ Ay) +3%(2(d —1)B, + A,) — 8%(Bo +2(d — 1)B,).

With A; By > 0, Bp + A; > 0 part of the Whitham conditions are satisfied.

For ©, we associaté,(¢) with roots P»(£p+) = 0. From positivity we gefP,(+1) > 0
for d = 2, 3 while only ford = 2 and symmetric modelg = ;11 we get analyticallyP,(0) =
—[n/2 + 2(0c + a)ngz] < 0 with the interlacing Whitham propertyl < - <0< & <1
satisfied forQ2z, 2, (in the other cases the property has been only verified numerically).

For Q,, Q1, the Whitham criterigy_ < & < &g+ and¢,— < & < &+, have only been
verified numerically.

The exact solutions (5.2) and section 4 studied in appendix A2, result from the
compatibility between two scalar Riccati equationsfoN3 (y; = y3). The mass conservation
gives the jump relation between the asymptotic states while both the nonconservative
momentum andVs evolution equations give four relations for the asymptotic states and two
for the compatible Riccati solutions.

We recall [10] that from the knowledge of the (09) 6tates we can predict the existence
(or not) of overshoots for the internal energyP/p, depending whethefy j, < O (or not).

(For Broadwell and hexagonal models we have- p[1 — (j/p)?] for the pressure.)

In the figures 24)—(b), for d = 2, 3, see table 2 (with Lax—Whitham criteria and shock
inequalities satisfied) we have rarefactive shocks.&q, Py are atz = +oo, but, except for
figure 2@), d = 2 with upstream at = +o0, in all other cases they are-abo. In figure 2§)

(figure 2p)) we haveP/p with (without) overshoots.

In the original Broadwell model the loss and gain elastic collision terms are zero at one
asymptotic state. Here (except in figur@Re = 2) we choose such solutions at the (0) state
with no; = 1, no2 = noz = 0. ConsequenthyV; (z)/n,; are equal foi =2, 3,00 = jo=1
and for the pressur®, = 0. We notice that we can have either an overshoot in figuag 2(

d = 3 or monotonic internal energy in figured}( In contrast for ‘homogeneous’ solutions (all
densities equal at one asymptotic state), due to ejther 0 or j; = 0, the productjpj; = 0
and we cannot have overshoots.

We natice that for the solutions presented in figures a20d ) (as in figures 3) and o),

4(a) and p)) the S; do not have the same sign, they can be either sources or sinks. The reason is
thatin order to retain the mass conservation the global amount of sources and sinks must be zero,
contrary to the pure nonconservative models where we can have either only sources or sinks.
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5.3. Comparison between conservative and nonconservative Broadwell models

The main difference is that the shocks are compressive (rarefactive) for conservative
(nonconservative) models. In the conservative case the two main propertigg@are-

0,&Vo < 0 (lemmas 2-4), while in the nonconservative case theyydkg — &)p1 >

0, (k; — &)Vo > 0O (theorem 2, lemma 1(i)). In the four cases (theorems 1-3 with (1.1)-
(2.2)), the locations of the (0) ap) states attoo as well asp;, = po are the same. The
difference is that the directions of the shocks (sigrvgf are opposite, such that from the
upstream to the downstream stafe#creases (conservative) or decreases (nonconservative).

6. Hexagonal @; model with p = N, + 2N, ., J = N;, + N,

We have four independent densities (cf figureNy) N4 and N,, N3 (multiplicity two) with
x-coordinateg#+1, i%) and the four evolution equations written in appendix B1. First, for
evolution equations without elastic collisions, we still have both the mass conservatib)i-(2
(2.5b), with the jump relatiory; = p1£ andsS, = S;,+2S5, = 0, and the modified momentum
(2.4c)—~(2.5¢) with: k; = ki, — k34 ps = p — 3N,3/2. Second, with only binary elastic
collisions we have another relation without elastic collisionsNgk.

In the conservative model this is a ‘spurious conservation law’ with sound-wave roots of
a cubic polynomial (cf the study of shock waves in [&}hile for the true physical hexagonal
model, adding cubic elastic collisions, the sound waves are roots of a quadratic polynomial
Here for the nonconservative (except mass) model the ‘spurious relation’ disappears and we can
restrict our study to binary collisions, but for this reason we will not compare the conservative
and nonconservative shock solutions.

To the mass conservative and momentum nonconservative relations we addva thivg
evolution equation without elastic collisions (it is a ‘spurious relation’ for the conservative
model) and finally theV, equation with elastic collisions:

atN£3 + 8XN£3/2 = az(_éN{g - N;g) = (ap + n)(PK£3 - N£3) + Sgg

6.1
(0; + 0x/2)N2 = 3,(—& + 1/2)N2 = 0 (N1 N4 — N2N3) + (ap + 1) (pk2 — N2) + So. 6.1)

The exact solutions (4.1)—(4.3), studied in appendix B1, result from the compatibility between
three scalar Riccati equatiorfsr J, N, 5, Nz requiringy; = yz3 = y2.

Linearizing around the (0) state we have four operat@ig:= (93 — 9%)(03 — 0%/4).
(roots+1, i%), Q3, Q2 (written in appendix B2) (rootgy. with verification&y € [So+, {o-]
numerica) and2; for the sound waves written in (3.1)—(3.3).

We present, see table 2, in figurea)3{nd @) solutions with the Lax—Whitham criteria and
shock inequalities satisfied, and rarefactive shocks. In figuedaB @) we have downstream
ps, &, Py atz = +oo, and upstream (0) state at= —oo and joj; < 0 with (without) P/p
overshoot.

7. Squares &; (9v;) without (with) rest particle

7.1. SquareBv; model withp = N;S + 2(N2+’4 +N3), J = Ny 5+2N,,

We have five independent densities (cf figurevl) Ns andN,, N3, N4 (multiplicity two) with
x-coordinateg+1, 1, 0, —1) and the five evolution equations written in appendix C1. We
have three equations without elastic collisions. First, the mass conservatibj(2.5b) still
with the jump relationj; = p1& andS, = Sj + 2(S;, + S3) = 0, second the nonconservative
momentum (2c)—(2.5¢) with k; = k5 + 2¢5,, p; = p — 2N3 and third the nonconservative
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Table 3. Square 8; model.

a,n, ps < pPo K1, K2, K3, K4, K5 S1, 82, 83, Sa, S5, Ps < Po

0.1,0.31, 02 < 0.93 3107°3,0.296,510°%,0.013 —0.24,0.37,-0.277, 0.3, 0.04, 0.1075,893 < 0.73
o <& <é Co+ < §o—) §s— < s+ Wy < Vs < Vo< Wo

0.849, 0.85, 0.855 —0.639, 0908,—-0.638, 0914 —1.528,—-1.522,-1.506,—1.501

relation for the energy or equivalently fof;, = N» + N4. Finally, we write the equations for
N>, N3 with two elastic collision termg’y, Ca:

3tN£4 + 8xNz_,4 = 32(—$N£4+ N£4) = (ap + 77)(/0’('24 - N£4) + 55,4
(0 + 0x)N2 = 0.(=& + N2 = 02C2 + (ap + n)(pk2 — No) + 52 Cs := N1N4 — N>Ns
N3 = —£0.N3 = 01C1 + (ap + ) (px3 — N3) + S3 C1 = N1Ns — N3.

(7.1)

The exact solutions (4.1)—(4.3), studied in appendix C1, result from the compatibility between
the four scalar Riccati equatiorfer J, N£4, No, Nawith y; = Y24 = y3 = y2.

Linearizing around the (Gjtatewe have five operators2s = 9,(33 — 9%)? (roots Q £1),
Qa4, Q3 and 2, with rootsgg + (written in appendix C2) and only mumerical verificatiorof
the Whitham criterioréy € [Zo+, {o—] With & for Q; (see (3.1)—(3.3)). In figure 4), see
table 3, we present a rarefactive shock with the Lax—Whitham and shock inequalities satisfied
and (o5, Py) < (po, Po), (0) being the upstream ab and(s) the downstream atoco.

7.2. Squar®v; model withp = No + Ni5 +2(Ny 4+ N3), J = N5+ 2N, ,

To the previousV;,i = 1...5 we add a rest particl®y with x-coordinate (0). In the mass
conservation (2)—(2.5b), with j1 = p1&, we haveS, = Sp + S5+ 2(S;, + S3) = 0and in
the nonconservative momentum relatian: = K15+ 25 4 1 = p — 2N3 — No.

We have a third equation, without elastic collisions, for the energy or equivalently for
N;A — No/2 = NagoWith x40 = K£4 —Kk0/2, Sz40 = 554 — So/2. We add threel2+3, No, Ng4
equations with four elastic collision terndg, C», Co, Co that we write:

0:2(—§N2ao+ N, 4) = (ap+ ) (k240 — N24o) + S240 Co = N1N3 — NoN2
—0.& No = 200[Co + Co] + (ap + 1) (pko — No) + So Co = NsN3 — NoN4
9:(=E N33+ Na) = 02C2 + 01C1 — 00Co + (ap + ) (piz3 — Ny3) + S5 3
0.(—EN3 4 — Ng) = —02C2 + 01C1 — 00Co + (ap + 1) (pk3 4 — N3 4) + S 4-

(7.2)
(7.3)

The exact solutions (4.1)—(4.3), studied in appendix D, result from the compatibility between
five scalar Riccati equatior®r J, Naso, N 5, No, N 4 With y; = y240 = y23 = 0 = yaa.
Linearizing around the (0) state we have six operatfs= 92(d3 — 0%)? (roots Q £1),
Qs, Q4, Q3, Q2 (not presented) an@;, with & written in (3.1)—(3.3).
In figure 4p), see table 4, we present a solutidh (= 10°S;, ki := 10°%;, oo =
1000, Py := 10°P,,...), with the Lax—Whitham and shock inequalities satisfied, which
is a rarefactive shock. The upstream $tate is at-oco and the (0) downstream ab with
(05, Ps) > (po, Po).



Shock waves for discrete velocity nonconservative models 6495

Table 4. Square 9; model.

a,n Ko, K1, k2, k3, K4, K5 So, 81, 82, 83, 84, S5

1.0,0.02 58.0, 45.0, 40.0, 54.0, 233.0, 239.0 4.0, 25.0, 16.0, 1390, —27.0
So<&<és po < Ps, Po < Ps W < Vg < Vo< Wo
—0.76,—-0.7, —0.66 9.0, 23.0,12.0,29.0 0.235, 0.274,0.7,0.757

8. Conclusion

Our motivation was to find an intermediate class of models, between the standard
nonconservative models and the conservative ones, such that some very useful properties of the
conservative models could subsist. This is possible with a restriction of the nonconservative
parameters such that only the mass conservation law (with macroscopic quantities mass and
momentum) be retained. For these models the amount of creation—annihilation particles and
sources and sinksis globally zero for the mass conservation, but remains atthe microscopic level
for the densities, as well as for the other conservation laws which do not only share macroscopic
quantities. Since the pioneering Broadwell work, contrary to the nonconservative DVMs, a
major application of the conservative DVMs has been the study of shock waves. For the
modified nonconservative models (with mass conservation), for travelling waves, we discuss
both the Lax—Whitham criteria and shock inequalities. For these models (more #han 2

with momentum conserved in the associated conservative DVMs, we have fagameeal

result from only the conservative mass and nonconservative momentum evolution equations
The sound waves are the same for all models and depend on the nonconservative parameters.
Consequently, even without explicit solutions, we can discuss the Lax criterion and shock
inequalities (section 3). With the shock direction given by the sign of the four quantities
Vi = Vi, Wiew = Wy (the ratio of the momentum to the mass minus either the shock
speed or the sound-wave speegls,,) and the shock inequalities satisfied we deduce the Lax
criterionéso, < &€ < & .

We show that only rarefactive shocks exist, in contrast with conservative models where,
in general, the shocks are compressive while rarefactive shocks have been fAareh
illustration, for theconservative Broadwell models we show that only compressive shocks
exist

In sections 4—6 we construct explicitly compatible scalar Riccati solutions (detailed work
is found in the appendices) and verify the above general results. The new result is the
determination of a parametéf;,, such that eitheC,,, > 0 (or < 0) leads to both the
Lax criterion and satisfied (or not) shock inequalities. For the Whitham interlacing criterion
we do not have general analytic results and the verification is numerical.

Counting argument. Adding one more independent density we only have three more
relations but four parametess, S;, no;, n; and we can hope (if positivity is satisfied) to
obtain new compatible Riccati solutions for more general models. However, | think it more
useful to consider these compatible Riccati solutisassfying boundary conditiorass has

been done many times for the conservative models. Another possible application of these
solutions for the presented nonconservative models (done recently in discrete conservative
models [11]) is the study of evaporation—condensation processes with inversion of the internal
energy. For conservative models nonmonotonic internal energy behaviour can be predicted
from the macroscopic quantities (here we have also verified that this occurs for the presented
nonconservative models) and the same prediction was found for internal energy inversion [11].
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Appendix A. Shock waves for the Broadwell models

Appendix A.1. Conservative Broadwell models written in (5.3)

Appendix A.1.1. Solutions fafr = 2,3 and|§| < 1. All N;, being proportional we can
write for N;(z), p(z) = lez +2(d — 1)N3, J(z) = Ny, the (3.2) travelling waves solutions
with two asymptotic states: (@, po, jo and ¢) ny; = no; +n;, ps = pPo + 1, js = jo+ j1
such that the associated collision terms are 269, — N2 = 0 for N; = no;, ny;:

2 2
no1no2 = ng3 ninz —ng +nino2 +nongy — 2n3n03 =0. (A.l)

We defines = o/(d — 1), substituteN; (z) = no; +n;N(z) into (5.3), forNs; get a Riccati

equation [9] forN that we integrate:

EngN. =G(nina —ny) N(N —1)  N@) =[1+de*]™"  y =35(nf—nino)/nzé
(A.2)

with ps = po, o5 if ¥ 2 0. Frompo, ps, § we want to know the states #io (given by they

sign). We define; = n;/p1 and from the mass and momentum conservation laws, gt a

function of¢, substitute into (A.2) and get:

ilp=E=iy,  Ai,=&,=§  Ll=ij,+iz+2(d— i

iz=(1—-£%/2d -1 n=§E+1)/2 np=%§E-1)/2 (A.3)

vE/p =6[%((d = )? =) +1]/2(d —= 1) > 0 — yépr > 0.

Lemma 2. If p1§ 2 0thenpso = po, (05), P-c0 = Ps(P0)-

For the proof we gey = 0 from (A.3) and the result from (A.2).
Lemma 3. The shock speed satisfies, from positiyiy,< 1.

From (A.1)—(A.3) we get (for brevity we prove this only far = 2) two quadratict
polynomials:

Pa(§) = E%(po+ ps) — 26js +pr—Angz  Pa(§) = §2(po+ py) — 26jo — p1 — Anoa

(A.4)
d~educeP2(1) = 4ns~2 > 0, P,(—1) = 4}151 > 0, P,(0) = p1 — dnoz < 0 if 1 < 0 and
Pz(l) = 41102 > 0, Pz(—l) = 47101 > 0, Pz(O) = —p1 — 41’103 <O0if p1 > 0. In both cases

p1 = 0 we deducet| < 1 and for the two roots* = 0. For thed = 3 model, for brevity we
consider only the isotropic casey = ng;, i = 1,2, 3, jo = 0.

Lemma 3(i). For the isotropic(0) state, the shock speed satisflgd < £2 < 1for p; > 0
and£? < 1/d for p; < 0.

For the proof we rewrite (A.1)—(A.3), géf = p,/(po + ps) for d = 2 and explicitly for
d=32:

d=2,3 0<no=pi(l—&)[1+E2((d—1?—1]/4d — 1)(d&* - 1). (A.5)
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Appendix A.1.2. Linearizing (A.1) withN; >~ ng;[1+ X; (x — ¢1)] we get a lineaX; system
leading to a cubic polynomiab” (¢ = 0, +1) and a quadrati®,” (¢ = &%) = 0 for the
sound waves.

PZ(O)(éo) = aofl — &o(d — 1) jo — 2n03 oo i=2no3+ (d — 1)(no1 +no2) >0

A.6
t5t <0 ~o

With P,°(0) < 0, Ps”(41) > 0 the Whitham criterion foP”, P\” is satisfied~1 < &, <
0 < & < 1 and similarly forP” (£*) with ng; — ;.

Lemma 4. We finds Vo < Oford = 2, 3.
For the proof webegin withd = 2. First we study the squtionBz(O) (sgt) = 0 of (A.6):

g = (o vA)/2p0) 20 A = j& +8nozpo Wi = jo/po— &5 =65 <O
(A.7)

and similarly* = 0, W* = j;/p, — £ = £F < 0. Second, with the sig;" = £J,
W* = &7, we have the same indé¥, & for &, &. From lemma % is in the intervak;, &+
andéwgt =&EFT < 0oréVy < 0. In conclusion we must only associate:

£20- & =¢F g, =& Wo=Wi =<0 W, =W*=¢F<0.

We continue withd = 3 and notice that fod = 2 the necessary property wﬁ%i <0,
W < 0 associated tsoi, ££. In order to show the same property we only rewg'g‘e Woi:

& =lotVA]22 20, T=%n6>0 A= ji+4ne¥

. . (A.8)
25 poWiE = (no1+no2) (jo F VA) F 21032V A £ jo) S0 — WE S 0.

Let us notice that for isotropic (0) statg; = no, from (A.6), (A.7) we geESE = 1/+/d and
recall, from lemma 3(i)|&| = 1/+/d if p1 = 0.

Theorem 3. For d = 2, 3 no rarefactive shock can exist.

For the proof we must show thatat the upstream is lower than at the downstream (or
compressive shock). We apply (A.3) and lemmadié > 0,&V,y < 0 to four cases.

(1) ¢ > 0 giving Vp < 0, a negative direction of the shock with upstream (downstream) at
Fo0.
(1.2) p1 > 0 givingy > 0 andpg(p,) at+oo or pg (Uupstream)< p, (downstream).
(1.2) p1 < 0 — y < 0 andp(po), upstream (downstream) atoor p, (upstream)< rq
(downstream).

(2) £¢ < 0giving Vp > 0, a positive direction of the shock, upstream (downstreangoat
(21)p1 > 0 - y < 0 andp;(pg) at oo or downstream (upstream) and finajby
(upstream)k p, downstream.

(2.2) p1 < 0 — y > 0 andp,(pg), upstream (downstream) &bo or p, (upstream) pg
(downstream).



6498 H Cornille

Appendix A.2. Nonconservative Broadwell model with Riccati solutions (5.2)

We define:

np=n;/pr n=n/a y=y/poe ngjy=nn;—mn o=o0o/(d-La

! ) ‘ ’ / ! ; (A9
n0ijk = P1iju + Noiltj +nojn; — nody — nofik Crox =1—-£&“—2(d — Dna.

From the mass conservation.48) we getS, = SI.,z + 2(d — 1)S3 = 0 and one relation
Jj1= p1&. With p; = nlz + 2(d — Dnz we deduces; as functions ofis:

1=ny,+2(d— Dns & =ny,—> 20 =1— (=D& — 2(d — D3 i=12
(A.10)
For both the momentum relation without elastic collisiong{P-(2.5¢) and theN3 evolution

equation with elastic collisions (21)—(2.5a) we get three relations: two for the (0))(
asymptotic states and one for the scalar Riccati solutions:

Sy = 815, =a(po+1)(jo—kypo) and 005 jo = Ps» Jis AL
Api=po+il Byi=Aptpo  EAy=ksBy—jo 7 =0 —8/Crax
S5 = 6 (nf3 — nornoz) + e (nos — k3po) (po + 1) and noi, Po = My Ps

_ _ o _ ) (A.12)
Byk3 = Apnz +noz — 01,1233 y = (i3 — k3 — 0i1233) /ENs.

Starting withpa, &, n3, k;, «, 1, no1, no2 We deduce successively all other parameters.

Appendix B. Shock waves for the hexagonal model (4.1)

Appendix B.1.

Compatible Riccati solutions for the foi; evolution equations

0;N; +e;0;N; = 0;(N2N3 — N1Na) + (ap + B)(pki — N;) + §; i=12234 (B.1)
e =1+3 —1,0//0 =2,1,1,2. Asin (A.9) we defingi;, ... andng,; = noi £ no; ... .
Gi =01/ Crox=1—§>=3i35/2 (p1. 1) > L=ii1,+ 2155 & =10y, +755 (B.2)

We retain three evolution equations without elastic collisiongfal, J (z), No3(z) andN»(z)
with elastic collisions. Fop the relationj; = &p; is written at the end of (B.2), for each of the
three other we have three relations, two for the asymptotic states andfonthe compatible
Riccati solutions:

V= (ks —8)/CLax = (kg5 — 153) /(55 — £y 5) =[G M1azs+ k2 — 2] /712(5 — &) (B.3)
BpK] = Apé + jo BPKZ_,S = APﬁZS +n&23 BpKz = Apflz +ng2 — 6’1’_10,1423 (B4)
Sy = S — S35 = a(po + 1) (jo — poks) Syz = a(ng 93 — Poky3)

_ B.5
S2 = o (no2no3 — nownos) + a (oo + 1) (o2 — pok2). (85
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Appendix B.2.

Linearizing around (O) we getadd X ,, X ;, X3, X, linear system with four linear differential
operators and writ&; as follows:

o 0 0y 0 0
Thg | A Bt A 3/29, -3, | _,
— ! —As 0 0; — 0, /2+ A, 0y
—Az —Ay —As 0 +0,/2+ A
A1 = A; +0(2n514+ng3) Az = a(2p0k2,3 — ng 29) +11K2,3 (B.6)
Az = a(2poks — nop) + nko + on6,14/2 Ag=o0ng /2

As = 0 (nos + 2ng2 + 3ng1)/2
Q= 05(A (A) +2A1) + 32[A,(A1+A)) + Aj(As — 344+ (A; — A1)/2)]
+0%[As(A,/2 — A1+ 3A3) + As(A, +342) — A1(A,/2 + 3A2/2)].

Appendix C. Shock waves for the square 8; model (7.1)
Appendix C.1.
Compatible Riccati solutions with fiv;,i = 1, ..., 5 evolution equations:

(0 +€;0,)N; = 01;C1+02,Co+ (ap + B)(px; — N;) +5; (C1)

With C1, Coin (7.1),e; = 1,1,0, =1, 1,01, /o1 = —1,0,1,0, — 1,00, /o = 2, —1,0, 1, 2.
We define, as in (A.9)‘;$, G =01/, Vs ftijus nﬁij =ng £ng; ...

Crax = 1— &% — 2713 (p1, j1) &> L =115+ 2055 +03) §=n5+2n,, (C2)
FortheJ, N4, N2, N3 equations we write the four compatibjfeand (25a)—(2.5¢) relations:

V= (ks —8)/Crax = (k34 — 113,49/ iy 4 — £05 4)

= (13 — k3 — 0111533) /§n3 = (N2 — K2 — O2hi1425) /2§ — 1) (C.3)
§Ap, =KkyBy, — jo ﬁ;,4Ap = K£4Bp - ”6,24 (C.4)
n3A, = k3B, — no3 + 01710,1533 n2A, = k2B, — no» + 021101425

Appendix C.2.

We linearize around (0) witha® 5 X,, X;, X2.4, Xo, X3 and five;:

Az = a(2pokas — 1§ 4) + K24 Az = Ay +02(nf 15+ 20 54)

Az = a(2pok2 — no) + N2+ o2ng 45/ 2 A=Ay + 01(ng 15 + 2103)

A4 = 0'21’18,24/2

As = 02(no1 + 2n02) Ag = 0214 54 A7 = a(2pok3 — no3) + ks + o1ng 15/2

Ag = 01Ny 51/2 = —A10/4 Ag = —201n01 (C.5)
0y 0y 0 0 0

i=s 0 — A, B8 +Ay 0 0 23,

Q=| —A, 0 9,—0,+A, 20, 0 |=o
i=1 —A3 —Ag —As 0, +0, + Az 0

—Az7 —Ag —Ag —Ajg 3 + Az
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Appendix D. Shock waves for the square 8; model (7.2), (7.3)

Appendix D.1.

Compatible Riccati solutions fof, Naao, No, Ny 3, N3 4 With iza0 = 25 4 — 1i0/2:

Crax = 1— &% — 23— g (p1. j1) = 1=ty 5+ 275 4 +iiz) +ilg 0.1
§=nyg+ 2y, '

We write the five compatiblg C;,. = k; — & and the (Z5a)—(2.5¢) relations withouts;, S;:

Y = (k240 — N240) /(N5 — ENoag) = (Mg — ko — 200(711320+ 15340) /10&
= (34 — K34 — 01711533+ Gofl1320+ G2l 1425/ (E713 4 + 4) (D.2)
= (3.3 — K33 — 021495 — G1il1533+ Gois340/ (115 36 — 12) .
K240 = K;A —_ K0/2

_ . _ _ _
12404, = Kk240B, — ng 24+ 100/ 2 noA, = koB, — noo + 250(110,1320 + 710,5340)

—4 + + - - - - - - .

N3 44, = k3 4B, — g 34+ 01701533+ 02710,1425 — 00710,1320 §A,=x;B,— jo (D.3)
—+ + + . - - —

N334, = Ky 3B, — g o3 — 0270,1425 — 01710,1533 — 0070,5340 o; =o;/a.
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